Cap product

From HandWiki - Reading time: 5 min


In algebraic topology the cap product is a method of adjoining a chain of degree p with a cochain of degree q, such that qp, to form a composite chain of degree pq. It was introduced by Eduard Čech in 1936, and independently by Hassler Whitney in 1938.

Definition

Let X be a topological space and R a coefficient ring. The cap product is a bilinear map on singular homology and cohomology

:Hp(X;R)×Hq(X;R)Hpq(X;R).

defined by contracting a singular chain σ:Δ p X with a singular cochain ψCq(X;R), by the formula:

σψ=ψ(σ|[v0,,vq])σ|[vq,,vp].

Here, the notation σ|[v0,,vq] indicates the restriction of the simplicial map σ to its face spanned by the vectors of the base, see Simplex.

Interpretation

In analogy with the interpretation of the cup product in terms of the Künneth formula, we can explain the existence of the cap product in the following way. Using CW approximation we may assume that X is a CW-complex and C(X) (and C(X)) is the complex of its cellular chains (or cochains, respectively). Consider then the composition C(X)C(X)Δ*IdC(X)C(X)C(X)IdεC(X) where we are taking tensor products of chain complexes, Δ:XX×X is the diagonal map which induces the map Δ*:C(X)C(X×X)C(X)C(X) on the chain complex, and ε:Cp(X)Cq(X) is the evaluation map (always 0 except for p=q).

This composition then passes to the quotient to define the cap product :H(X)×H(X)H(X), and looking carefully at the above composition shows that it indeed takes the form of maps :Hp(X)×Hq(X)Hpq(X), which is always zero for p<q.

Fundamental Class

For any point x in M, we have the long-exact sequence in homology (with coefficients in R) of the pair (M, M - {x}) (See Relative homology)

Hn(Mx;R)i*Hn(M;R)j*Hn(M,Mx;R)Hn1(Mx;R).

An element [M] of Hn(M;R) is called the fundamental class for M if j*([M]) is a generator of Hn(M,Mx;R). A fundamental class of M exists if M is closed and R-orientable. In fact, if M is a closed, connected and R-orientable manifold, the map Hn(M;R)j*Hn(M,Mx;R) is an isomorphism for all x in R and hence, we can choose any generator of Hn(M;R) as the fundamental class.

Relation with Poincaré duality

For a closed R-orientable n-manifold M with fundamental class [M] in Hn(M;R) (which we can choose to be any generator of Hn(M;R)), the cap product map Hk(M;R)Hnk(M;R),α[M]α is an isomorphism for all k. This result is famously called Poincaré duality.

The slant product

If in the above discussion one replaces X×X by X×Y, the construction can be (partially) replicated starting from the mappings C(X×Y)C(Y)C(X)C(Y)C(Y)IdεC(X) and C(X×Y)C(Y)C(X)C(Y)C(Y)IdεC(X)

to get, respectively, slant products /: Hp(X×Y;R)Hq(Y;R)Hpq(X;R) and Hp(X×Y;R)Hq(Y;R)Hpq(X;R).

In case X = Y, the first one is related to the cap product by the diagonal map: Δ*(a)/ϕ=aϕ.

These ‘products’ are in some ways more like division than multiplication, which is reflected in their notation.

Equations

The boundary of a cap product is given by :

(σψ)=(1)q(σψσδψ).

Given a map f the induced maps satisfy :

f*(σ)ψ=f*(σf*(ψ)).

The cap and cup product are related by :

ψ(σφ)=(φψ)(σ)

where

σ:Δp+qX, ψCq(X;R) and φCp(X;R).

An interesting consequence of the last equation is that it makes H(X;R) into a right H(X;R)-module.

See also

References

  • Hatcher, A., Algebraic Topology, Cambridge University Press (2002) ISBN 0-521-79540-0. Detailed discussion of homology theories for simplicial complexes and manifolds, singular homology, etc.
  • May, J. Peter (1999). A Concise Course in Algebraic Topology. University of Chicago Press. http://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf. Retrieved 2008-09-27.  Section 2.7 provides a category-theoretic presentation of the theorem as a colimit in the category of groupoids.
  • slant product in nLab
  • Poincaré duality in nLab




Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Cap_product
16 views | Status: cached on January 24 2026 15:01:39
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF