In mathematics, the Cartan decomposition is a decomposition of a semisimple Lie group or Lie algebra, which plays an important role in their structure theory and representation theory. It generalizes the polar decomposition or singular value decomposition of matrices. Its history can be traced to the 1880s work of Élie Cartan and Wilhelm Killing.[1]
Let [math]\displaystyle{ \mathfrak{g} }[/math] be a real semisimple Lie algebra and let [math]\displaystyle{ B(\cdot,\cdot) }[/math] be its Killing form. An involution on [math]\displaystyle{ \mathfrak{g} }[/math] is a Lie algebra automorphism [math]\displaystyle{ \theta }[/math] of [math]\displaystyle{ \mathfrak{g} }[/math] whose square is equal to the identity. Such an involution is called a Cartan involution on [math]\displaystyle{ \mathfrak{g} }[/math] if [math]\displaystyle{ B_\theta(X,Y) := -B(X,\theta Y) }[/math] is a positive definite bilinear form.
Two involutions [math]\displaystyle{ \theta_1 }[/math] and [math]\displaystyle{ \theta_2 }[/math] are considered equivalent if they differ only by an inner automorphism.
Any real semisimple Lie algebra has a Cartan involution, and any two Cartan involutions are equivalent.
Let [math]\displaystyle{ \theta }[/math] be an involution on a Lie algebra [math]\displaystyle{ \mathfrak{g} }[/math]. Since [math]\displaystyle{ \theta^2=1 }[/math], the linear map [math]\displaystyle{ \theta }[/math] has the two eigenvalues [math]\displaystyle{ \pm1 }[/math]. If [math]\displaystyle{ \mathfrak{k} }[/math] and [math]\displaystyle{ \mathfrak{p} }[/math] denote the eigenspaces corresponding to +1 and -1, respectively, then [math]\displaystyle{ \mathfrak{g} = \mathfrak{k}\oplus\mathfrak{p} }[/math]. Since [math]\displaystyle{ \theta }[/math] is a Lie algebra automorphism, the Lie bracket of two of its eigenspaces is contained in the eigenspace corresponding to the product of their eigenvalues. It follows that
Thus [math]\displaystyle{ \mathfrak{k} }[/math] is a Lie subalgebra, while any subalgebra of [math]\displaystyle{ \mathfrak{p} }[/math] is commutative.
Conversely, a decomposition [math]\displaystyle{ \mathfrak{g} = \mathfrak{k}\oplus\mathfrak{p} }[/math] with these extra properties determines an involution [math]\displaystyle{ \theta }[/math] on [math]\displaystyle{ \mathfrak{g} }[/math] that is [math]\displaystyle{ +1 }[/math] on [math]\displaystyle{ \mathfrak{k} }[/math] and [math]\displaystyle{ -1 }[/math] on [math]\displaystyle{ \mathfrak{p} }[/math].
Such a pair [math]\displaystyle{ (\mathfrak{k}, \mathfrak{p}) }[/math] is also called a Cartan pair of [math]\displaystyle{ \mathfrak{g} }[/math], and [math]\displaystyle{ (\mathfrak{g},\mathfrak{k}) }[/math] is called a symmetric pair. This notion of a Cartan pair here is not to be confused with the distinct notion involving the relative Lie algebra cohomology [math]\displaystyle{ H^*(\mathfrak{g},\mathfrak{k}) }[/math].
The decomposition [math]\displaystyle{ \mathfrak{g} = \mathfrak{k}\oplus\mathfrak{p} }[/math] associated to a Cartan involution is called a Cartan decomposition of [math]\displaystyle{ \mathfrak{g} }[/math]. The special feature of a Cartan decomposition is that the Killing form is negative definite on [math]\displaystyle{ \mathfrak{k} }[/math] and positive definite on [math]\displaystyle{ \mathfrak{p} }[/math]. Furthermore, [math]\displaystyle{ \mathfrak{k} }[/math] and [math]\displaystyle{ \mathfrak{p} }[/math] are orthogonal complements of each other with respect to the Killing form on [math]\displaystyle{ \mathfrak{g} }[/math].
Let [math]\displaystyle{ G }[/math] be a non-compact semisimple Lie group and [math]\displaystyle{ \mathfrak{g} }[/math] its Lie algebra. Let [math]\displaystyle{ \theta }[/math] be a Cartan involution on [math]\displaystyle{ \mathfrak{g} }[/math] and let [math]\displaystyle{ (\mathfrak{k},\mathfrak{p}) }[/math] be the resulting Cartan pair. Let [math]\displaystyle{ K }[/math] be the analytic subgroup of [math]\displaystyle{ G }[/math] with Lie algebra [math]\displaystyle{ \mathfrak{k} }[/math]. Then:
The automorphism [math]\displaystyle{ \Theta }[/math] is also called the global Cartan involution, and the diffeomorphism [math]\displaystyle{ K\times\mathfrak{p} \rightarrow G }[/math] is called the global Cartan decomposition. If we write [math]\displaystyle{ P=\mathrm{exp}(\mathfrak{p})\subset G }[/math] this says that the product map [math]\displaystyle{ K\times P \rightarrow G }[/math] is a diffeomorphism so [math]\displaystyle{ G=KP }[/math].
For the general linear group, [math]\displaystyle{ X \mapsto (X^{-1})^T }[/math] is a Cartan involution.[clarification needed]
A refinement of the Cartan decomposition for symmetric spaces of compact or noncompact type states that the maximal Abelian subalgebras [math]\displaystyle{ \mathfrak{a} }[/math] in [math]\displaystyle{ \mathfrak{p} }[/math] are unique up to conjugation by [math]\displaystyle{ K }[/math]. Moreover,
where [math]\displaystyle{ A = e^\mathfrak{a} }[/math].
In the compact and noncompact case the global Cartan decomposition thus implies
Geometrically the image of the subgroup [math]\displaystyle{ A }[/math] in [math]\displaystyle{ G/K }[/math] is a totally geodesic submanifold.
Consider [math]\displaystyle{ \mathfrak{gl}_n(\mathbb{R}) }[/math] with the Cartan involution [math]\displaystyle{ \theta(X)=-X^T }[/math].[clarification needed] Then [math]\displaystyle{ \mathfrak{k}=\mathfrak{so}_n(\mathbb{R}) }[/math] is the real Lie algebra of skew-symmetric matrices, so that [math]\displaystyle{ K=\mathrm{SO}(n) }[/math], while [math]\displaystyle{ \mathfrak{p} }[/math] is the subspace of symmetric matrices. Thus the exponential map is a diffeomorphism from [math]\displaystyle{ \mathfrak{p} }[/math] onto the space of positive definite matrices. Up to this exponential map, the global Cartan decomposition is the polar decomposition of a matrix. The polar decomposition of an invertible matrix is unique.
Original source: https://en.wikipedia.org/wiki/Cartan decomposition.
Read more |