In mathematics, cellular homology in algebraic topology is a homology theory for the category of CW-complexes. It agrees with singular homology, and can provide an effective means of computing homology modules.
If [math]\displaystyle{ X }[/math] is a CW-complex with n-skeleton [math]\displaystyle{ X_{n} }[/math], the cellular-homology modules are defined as the homology groups Hi of the cellular chain complex
where [math]\displaystyle{ X_{-1} }[/math] is taken to be the empty set.
The group
is free abelian, with generators that can be identified with the [math]\displaystyle{ n }[/math]-cells of [math]\displaystyle{ X }[/math]. Let [math]\displaystyle{ e_{n}^{\alpha} }[/math] be an [math]\displaystyle{ n }[/math]-cell of [math]\displaystyle{ X }[/math], and let [math]\displaystyle{ \chi_{n}^{\alpha}: \partial e_{n}^{\alpha} \cong \mathbb{S}^{n - 1} \to X_{n-1} }[/math] be the attaching map. Then consider the composition
where the first map identifies [math]\displaystyle{ \mathbb{S}^{n - 1} }[/math] with [math]\displaystyle{ \partial e_{n}^{\alpha} }[/math] via the characteristic map [math]\displaystyle{ \Phi_{n}^{\alpha} }[/math] of [math]\displaystyle{ e_{n}^{\alpha} }[/math], the object [math]\displaystyle{ e_{n - 1}^{\beta} }[/math] is an [math]\displaystyle{ (n - 1) }[/math]-cell of X, the third map [math]\displaystyle{ q }[/math] is the quotient map that collapses [math]\displaystyle{ X_{n - 1} \setminus e_{n - 1}^{\beta} }[/math] to a point (thus wrapping [math]\displaystyle{ e_{n - 1}^{\beta} }[/math] into a sphere [math]\displaystyle{ \mathbb{S}^{n - 1} }[/math]), and the last map identifies [math]\displaystyle{ X_{n - 1} / \left( X_{n - 1} \setminus e_{n - 1}^{\beta} \right) }[/math] with [math]\displaystyle{ \mathbb{S}^{n - 1} }[/math] via the characteristic map [math]\displaystyle{ \Phi_{n - 1}^{\beta} }[/math] of [math]\displaystyle{ e_{n - 1}^{\beta} }[/math].
The boundary map
is then given by the formula
where [math]\displaystyle{ \deg \left( \chi_{n}^{\alpha \beta} \right) }[/math] is the degree of [math]\displaystyle{ \chi_{n}^{\alpha \beta} }[/math] and the sum is taken over all [math]\displaystyle{ (n - 1) }[/math]-cells of [math]\displaystyle{ X }[/math], considered as generators of [math]\displaystyle{ {C_{n - 1}}(X_{n - 1},X_{n - 2}) }[/math].
The following examples illustrate why computations done with cellular homology are often more efficient than those calculated by using singular homology alone.
The n-dimensional sphere Sn admits a CW structure with two cells, one 0-cell and one n-cell. Here the n-cell is attached by the constant mapping from [math]\displaystyle{ S^{n-1} }[/math] to 0-cell. Since the generators of the cellular chain groups [math]\displaystyle{ {C_{k}}(S^n_{k},S^{n}_{k - 1}) }[/math] can be identified with the k-cells of Sn, we have that [math]\displaystyle{ {C_{k}}(S^n_{k},S^{n}_{k - 1})=\Z }[/math] for [math]\displaystyle{ k = 0, n, }[/math] and is otherwise trivial.
Hence for [math]\displaystyle{ n\gt 1 }[/math], the resulting chain complex is
but then as all the boundary maps are either to or from trivial groups, they must all be zero, meaning that the cellular homology groups are equal to
When [math]\displaystyle{ n=1 }[/math], it is possible to verify that the boundary map [math]\displaystyle{ \partial_1 }[/math] is zero, meaning the above formula holds for all positive [math]\displaystyle{ n }[/math].
Cellular homology can also be used to calculate the homology of the genus g surface [math]\displaystyle{ \Sigma_g }[/math]. The fundamental polygon of [math]\displaystyle{ \Sigma_g }[/math] is a [math]\displaystyle{ 4n }[/math]-gon which gives [math]\displaystyle{ \Sigma_g }[/math] a CW-structure with one 2-cell, [math]\displaystyle{ 2n }[/math] 1-cells, and one 0-cell. The 2-cell is attached along the boundary of the [math]\displaystyle{ 4n }[/math]-gon, which contains every 1-cell twice, once forwards and once backwards. This means the attaching map is zero, since the forwards and backwards directions of each 1-cell cancel out. Similarly, the attaching map for each 1-cell is also zero, since it is the constant mapping from [math]\displaystyle{ S^0 }[/math] to the 0-cell. Therefore, the resulting chain complex is
where all the boundary maps are zero. Therefore, this means the cellular homology of the genus g surface is given by
Similarly, one can construct the genus g surface with a crosscap attached as a CW complex with 1 0-cell, g 1-cells, and 1 2-cell. Its homology groups are[math]\displaystyle{ H_k(\Sigma_g) = \begin{cases} \mathbb{Z} & k = 0 \\ \mathbb{Z}^{g-1} \oplus \Z_2 & k = 1 \\ \{0\} & \text{otherwise.} \end{cases} }[/math]
The n-torus [math]\displaystyle{ (S^1)^n }[/math] can be constructed as the CW complex with 1 0-cell, n 1-cells, ..., and 1 n-cell. The chain complex is [math]\displaystyle{ 0\to \Z^{\binom{n}{n}} \to \Z^{\binom{n}{n-1}} \to \cdots \to \Z^{\binom{n}{1}} \to \Z^{\binom{n}{0}} \to 0 }[/math] and all the boundary maps are zero. This can be understood by explicitly constructing the cases for [math]\displaystyle{ n = 0, 1, 2, 3 }[/math], then see the pattern.
Thus, [math]\displaystyle{ H_k((S^1)^n) \simeq \Z^{\binom{n}{k}} }[/math] .
If [math]\displaystyle{ X }[/math] has no adjacent-dimensional cells, (so if it has n-cells, it has no (n-1)-cells and (n+1)-cells), then [math]\displaystyle{ H_n^{CW}(X) }[/math] is the free abelian group generated by its n-cells, for each [math]\displaystyle{ n }[/math].
The complex projective space [math]\displaystyle{ P^n\mathbb C }[/math] is obtained by gluing together a 0-cell, a 2-cell, ..., and a (2n)-cell, thus [math]\displaystyle{ H_k(P^n\mathbb C) = \Z }[/math] for [math]\displaystyle{ k = 0, 2, ..., 2n }[/math], and zero otherwise.
The real projective space [math]\displaystyle{ \mathbb{R} P^n }[/math] admits a CW-structure with one [math]\displaystyle{ k }[/math]-cell [math]\displaystyle{ e_k }[/math] for all [math]\displaystyle{ k \in \{0, 1, \dots, n\} }[/math]. The attaching map for these [math]\displaystyle{ k }[/math]-cells is given by the 2-fold covering map [math]\displaystyle{ \varphi_k \colon S^{k - 1} \to \mathbb{R} P^{k - 1} }[/math]. (Observe that the [math]\displaystyle{ k }[/math]-skeleton [math]\displaystyle{ \mathbb{R} P^n_k \cong \mathbb{R} P^k }[/math] for all [math]\displaystyle{ k \in \{0, 1, \dots, n\} }[/math].) Note that in this case, [math]\displaystyle{ C_k(\mathbb{R} P^n_k, \mathbb{R} P^n_{k - 1}) \cong \mathbb{Z} }[/math] for all [math]\displaystyle{ k \in \{0, 1, \dots, n\} }[/math].
To compute the boundary map
we must find the degree of the map
Now, note that [math]\displaystyle{ \varphi_k^{-1}(\mathbb{R} P^{k - 2}) = S^{k - 2} \subseteq S^{k - 1} }[/math], and for each point [math]\displaystyle{ x \in \mathbb{R} P^{k - 1} \setminus \mathbb{R} P^{k - 2} }[/math], we have that [math]\displaystyle{ \varphi^{-1}(\{x\}) }[/math] consists of two points, one in each connected component (open hemisphere) of [math]\displaystyle{ S^{k - 1}\setminus S^{k - 2} }[/math]. Thus, in order to find the degree of the map [math]\displaystyle{ \chi_k }[/math], it is sufficient to find the local degrees of [math]\displaystyle{ \chi_k }[/math] on each of these open hemispheres. For ease of notation, we let [math]\displaystyle{ B_k }[/math] and [math]\displaystyle{ \tilde B_k }[/math] denote the connected components of [math]\displaystyle{ S^{k - 1}\setminus S^{k - 2} }[/math]. Then [math]\displaystyle{ \chi_k|_{B_k} }[/math] and [math]\displaystyle{ \chi_k|_{\tilde B_k} }[/math] are homeomorphisms, and [math]\displaystyle{ \chi_k|_{\tilde B_k} = \chi_k|_{B_k} \circ A }[/math], where [math]\displaystyle{ A }[/math] is the antipodal map. Now, the degree of the antipodal map on [math]\displaystyle{ S^{k - 1} }[/math] is [math]\displaystyle{ (-1)^k }[/math]. Hence, without loss of generality, we have that the local degree of [math]\displaystyle{ \chi_k }[/math] on [math]\displaystyle{ B_k }[/math] is [math]\displaystyle{ 1 }[/math] and the local degree of [math]\displaystyle{ \chi_k }[/math] on [math]\displaystyle{ \tilde B_k }[/math] is [math]\displaystyle{ (-1)^k }[/math]. Adding the local degrees, we have that
The boundary map [math]\displaystyle{ \partial_k }[/math] is then given by [math]\displaystyle{ \deg(\chi_k) }[/math].
We thus have that the CW-structure on [math]\displaystyle{ \mathbb{R} P^n }[/math] gives rise to the following chain complex:
where [math]\displaystyle{ \partial_n = 2 }[/math] if [math]\displaystyle{ n }[/math] is even and [math]\displaystyle{ \partial_n = 0 }[/math] if [math]\displaystyle{ n }[/math] is odd. Hence, the cellular homology groups for [math]\displaystyle{ \mathbb{R} P^n }[/math] are the following:
One sees from the cellular chain complex that the [math]\displaystyle{ n }[/math]-skeleton determines all lower-dimensional homology modules:
for [math]\displaystyle{ k \lt n }[/math].
An important consequence of this cellular perspective is that if a CW-complex has no cells in consecutive dimensions, then all of its homology modules are free. For example, the complex projective space [math]\displaystyle{ \mathbb{CP}^{n} }[/math] has a cell structure with one cell in each even dimension; it follows that for [math]\displaystyle{ 0 \leq k \leq n }[/math],
and
The AtiyahâHirzebruch spectral sequence is the analogous method of computing the (co)homology of a CW-complex, for an arbitrary extraordinary (co)homology theory.
For a cellular complex [math]\displaystyle{ X }[/math], let [math]\displaystyle{ X_{j} }[/math] be its [math]\displaystyle{ j }[/math]-th skeleton, and [math]\displaystyle{ c_{j} }[/math] be the number of [math]\displaystyle{ j }[/math]-cells, i.e., the rank of the free module [math]\displaystyle{ {C_{j}}(X_{j},X_{j - 1}) }[/math]. The Euler characteristic of [math]\displaystyle{ X }[/math] is then defined by
The Euler characteristic is a homotopy invariant. In fact, in terms of the Betti numbers of [math]\displaystyle{ X }[/math],
This can be justified as follows. Consider the long exact sequence of relative homology for the triple [math]\displaystyle{ (X_{n},X_{n - 1},\varnothing) }[/math]:
Chasing exactness through the sequence gives
The same calculation applies to the triples [math]\displaystyle{ (X_{n - 1},X_{n - 2},\varnothing) }[/math], [math]\displaystyle{ (X_{n - 2},X_{n - 3},\varnothing) }[/math], etc. By induction,
Original source: https://en.wikipedia.org/wiki/Cellular homology.
Read more |