In organic chemistry, an aldol is a structure consisting of a hydroxy group (-OH) two carbons away from either an aldehyde or a ketone. The name combines the suffix 'ol' from the alcohol and the prefix depending on the carbonyl group, either 'ald' for an aldehyde, or 'ket' for a ketone, in which case it referred to as a 'ketol'. An aldol may also use the term β-hydroxy aldehyde (or β-hydroxy ketone for a ketol). The term "aldol" may refer to 3-hydroxybutanal.[1][2]
Aldols are the product of a carbon-carbon bond-formation reaction, giving them wide applicability as a precursor for a variety of other compounds.
Possible stereochemical configurations for chiral aldols. R/S configurations of chiral centers: A: OH is 4R, R-group is 3R B: OH is 4S, R-group is 3S C: OH is 4R, R-group is 3S D: OH is 4S, R-group is 3R
Aldols are usually synthesized from an aldol addition reaction using two aldehydes or an aldehyde and a ketone for a ketol.[1] These reactions may also be done intramolecularly to form 5 or 6 member rings or for stereoselective syntheses in the active area of asymmetric synthesis.
↑Zhang, Yanping; Mu, Hongliang; Pan, Li; Wang, Xuling; Li, Yuesheng (21 May 2018). "Robust Bulky [P,O] Neutral Nickel Catalysts for Copolymerization of Ethylene with Polar Vinyl Monomers". ACS Catal.8 (7): 5963–5976. doi:10.1021/acscatal.8b01088.
↑Schetter, Bernd; Mahrwald, Rainer (2006). "Modern aldol methods for the total synthesis of polyketides". Angewandte Chemie International Edition45 (45): 7506–25. doi:10.1002/anie.200602780. PMID17103481.
↑Ko, Ji S.; Keum, Ji E.; Ko, Soo Y. (15 October 2010). "A synthesis of oseltamivir (Tamiflu) starting from D-mannitol". J Org Chem75 (20): 7006–9. doi:10.1021/jo101517g. PMID20866058.