From HandWiki - Reading time: 5 min
| Names | |
|---|---|
| Other names
Holmium(III) acetate
| |
| Identifiers | |
| |
3D model (JSmol)
|
|
| ChemSpider | |
| EC Number |
|
PubChem CID
|
|
| |
| |
| Properties | |
| Ho(CH3COO)3 | |
| Appearance | crystals |
| soluble | |
| Related compounds | |
Other anions
|
Holmium oxide Holmium hydroxide |
Other cations
|
Dysprosium acetate Erbium acetate |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
| Infobox references | |

Holmium acetate is the acetate salt of holmium, with a chemical formula of Ho(CH3COO)3[1] as well as at least one hydrate.
Holmium acetate can be obtained by dissolving holmium oxide in hot acetic acid[2]
Dissolving holmium oxide in acetic acid at a pH of 4 will form the tetrahydrate of holmium acetate (Ho2(CH3COO)6·4H2O):[3] The anhydrous material can be obtained by heating the hydrated acetate in acetic acid.[1]
Holmium acetate hemihepthydate decomposes at 105 °C, forming into a hemihydrate, further decomposing at 135 °C into an anhydride. Further adding heat will form Ho(OH)(CH3COO)2, HoO(CH3COO) then Ho2O2CO3, forming holmium oxide at 590 °C.[4]
According to X-ray crystallography, anhydrous holmium acetate is a coordination polymer. Each Ho(III) center is nine-coordinate, with two bidentate acetate ligands and the remaining sites occupied by oxygens provided by bridging acetate ligands. The lanthanum and praseodymium compounds are isostructural.[1] In a second polymorph, holmium acetate has 8-coordination.[2] A tetrahydrate has also been crystallized.[5]
Holmium acetate is used in the manufacture of ceramics, glass, phosphors, metal halide lamps, and as a dopant in garnet lasers. It is also used in nuclear reactors to keep the chain reaction in check.[6]
Acetyl halides and salts of the acetate ion
| |||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AcOH | He | ||||||||||||||||||
| LiOAc | Be(OAc)2 BeAcOH |
B(OAc)3 | AcOAc ROAc |
NH4OAc | AcOOH | FAc | Ne | ||||||||||||
| NaOAc | Mg(OAc)2 | Al(OAc)3 ALSOL Al(OAc)2OH Al2SO4(OAc)4 |
Si | P | S | ClAc | Ar | ||||||||||||
| KOAc | Ca(OAc)2 | Sc(OAc)3 | Ti(OAc)4 | VO(OAc)3 | Cr(OAc)2 Cr(OAc)3 |
Mn(OAc)2 Mn(OAc)3 |
Fe(OAc)2 Fe(OAc)3 |
Co(OAc)2, Co(OAc)3 |
Ni(OAc)2 | Cu(OAc)2 | Zn(OAc)2 | Ga(OAc)3 | Ge | As(OAc)3 | Se | BrAc | Kr | ||
| RbOAc | Sr(OAc)2 | Y(OAc)3 | Zr(OAc)4 | Nb | Mo(OAc)2 | Tc | Ru(OAc)2 Ru(OAc)3 Ru(OAc)4 |
Rh2(OAc)4 | Pd(OAc)2 | AgOAc | Cd(OAc)2 | In | Sn(OAc)2 Sn(OAc)4 |
Sb(OAc)3 | Te | IAc | Xe | ||
| CsOAc | Ba(OAc)2 | Hf | Ta | W | Re | Os | Ir | Pt(OAc)2 | Au | Hg2(OAc)2, Hg(OAc)2 |
TlOAc Tl(OAc)3 |
Pb(OAc)2 Pb(OAc)4 |
Bi(OAc)3 | Po | At | Rn | |||
| Fr | Ra | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og | |||
| ↓ | |||||||||||||||||||
| La(OAc)3 | Ce(OAc)x | Pr | Nd | Pm | Sm(OAc)3 | Eu(OAc)3 | Gd(OAc)3 | Tb | Dy(OAc)3 | Ho(OAc)3 | Er | Tm | Yb(OAc)3 | Lu(OAc)3 | |||||
| Ac | Th | Pa | UO2(OAc)2 | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | |||||