Organozirconium chemistry is the science of exploring the properties, structure, and reactivity of organozirconium compounds, which are organometallic compounds containing chemical bonds between carbon and zirconium.[2] Organozirconium compounds have been widely studied, in part because they are useful catalysts in Ziegler-Natta polymerization.
Many organozirconium compounds have analogues on organotitanium chemistry. Zirconium(IV) is more resistant to reduction than titanium(IV) compounds, which often convert to Ti(III) derivatives. By the same token, Zr(II) is a particularly powerful reducing agent, forming robust dinitrogen complexes. Being a larger atom, zirconium forms complexes with higher coordination numbers, e.g. polymeric [CpZrCl3]n vs monomeric CpTiCl3 (Cp = C5H5).
History
Zirconocene dibromide was prepared in 1953 by a reaction of the cyclopentadienyl magnesium bromide and zirconium(IV) chloride.[3] In 1966, the dihydride Cp2ZrH2 was obtained by the reaction of Cp2Zr(BH4)2 with triethylamine.[4] In 1970, the related hydrochloride (now called Schwartz's reagent) was obtained by reduction of zirconacene dichloride (Cp2ZrCl2) with lithium aluminium hydride (or the related LiAlH(t-BuO)3).[5][6][7] The development of organozirconium reagents was recognized by a Nobel Prize in Chemistry to Ei-Ichi Negishi.[8][9]
Extensive chemistry has also been demonstrated from decamethylzirconocene dichloride, Cp*2ZrCl2. Well-studied derivatives include Cp*2ZrH2, [Cp*2Zr]2(N2)3, Cp*2Zr(CO)2, and Cp*2Zr(CH3)2.
Zirconocene dichloride can be used to cyclise enynes and dienes to give cyclic or bicyclic aliphatic systems.[14][15]
The simplest organozirconium compounds are the homoleptic alkyls. Salts of [Zr(CH3)6]2- are known. Tetrabenzylzirconium is a precursor to many catalysts for olefin polymerization. It can be converted to mixed alkyl, alkoxy, and halide derivatives, Zr(CH2C6H5)3X (X = CH3, OC2H5, Cl).
In addition to mixed Cp2Zr(CO)2, zirconium forms the binary carbonyl [Zr(CO)6]2-.[18]
Organohafnium chemistry
Organohafnium compounds behave nearly identically to organozirconium compounds, as hafnium is just below zirconium on the periodic table. Many Hf analogues of Zr compounds are known, including bis(cyclopentadienyl)hafnium(IV) dichloride, bis(cyclopentadienyl)hafnium(IV) dihydride, and dimethylbis(cyclopentadienyl)hafnium(IV).
Generic structure of a post-metallocene catalyst based on Dow's pyridyl-amido design.
Whitby, R. J.; Dixon, S.; Maloney, P. R.; Delerive, P.; Goodwin, B. J.; Parks, D. J.; Willson, T. M. (2006). "Identification of Small Molecule Agonists of the Orphan Nuclear Receptors Liver Receptor Homolog-1 and Steroidogenic Factor-1". Journal of Medicinal Chemistry49 (23): 6652–6655. doi:10.1021/jm060990k. PMID17154495.
Kasatkin, A.; Whitby, R. J. (1999). "Insertion of 1-Chloro-1-lithioalkenes into Organozirconocenes. A Versatile Synthesis of Stereodefined Unsaturated Systems". Journal of the American Chemical Society121 (30): 7039–7049. doi:10.1021/ja9910208.
References
↑Ewen, J. A.; Jones, R. L.; Razavi, A.; Ferrara, J. D. (1988). "Syndiospecific propylene polymerizations with Group IVB metallocenes". Journal of the American Chemical Society110 (18): 6255–6256. doi:10.1021/ja00226a056. PMID22148816.
↑G. Wilkinson; P. L. Pauson; J. M. Birmingham; F. A. Cotton (1953). "Bis-cyclopentadienyl derivatives of some transition elements". Journal of the American Chemical Society75 (4): 1011–1012. doi:10.1021/ja01100a527.
↑James, B. D.; Nanda, R. K.; Walbridge, M. G. H. (1967). "Reactions of Lewis bases with tetrahydroborate derivatives of the Group IVa elements. Preparation of new zirconium hydride species". Inorganic Chemistry6 (11): 1979–1983. doi:10.1021/ic50057a009.
↑Wailes, P. C.; Weigold, H. (1970). "Hydrido complexes of zirconium I. Preparation". Journal of Organometallic Chemistry24 (2): 405–411. doi:10.1016/S0022-328X(00)80281-8.
↑Wailes, P. C.; Weigold, H. (1970). "Hydrido complexes of zirconium II. Reactions of dicyclopentadienylzirconium dihydride with carboxylic acids". Journal of Organometallic Chemistry24 (2): 413–417. doi:10.1016/S0022-328X(00)80282-X.
↑Wailes, P. C.; Weigold, H.; Bell, A. P. (1971). "Hydrido complexes of zirconium". Journal of Organometallic Chemistry27 (3): 373–378. doi:10.1016/S0022-328X(00)82168-3.
↑McKnight, Andrew L.; Waymouth, Robert M. (1998). "Group 4ansa-Cyclopentadienyl-Amido Catalysts for Olefin Polymerization". Chemical Reviews98 (7): 2587–2598. doi:10.1021/cr940442r. PMID11848972.
↑Alt, Helmut G.; Köppl, Alexander (2000). "Effect of the Nature of Metallocene Complexes of Group IV Metals on Their Performance in Catalytic Ethylene and Propylene Polymerization". Chemical Reviews100 (4): 1205–1222. doi:10.1021/cr9804700. PMID11749264.
↑Sun, Ruen Chu; Okabe, Masami; Coffen, David L.; Schwartz, Jeffrey (1997). "Allylic Alcohols by Alkene Transfer from Zirconium to Zinc: 1-[(tert-Butyldiphenylsilyl)oxy]-dec-3-en-5-ol". Organic Syntheses74: 205. doi:10.15227/orgsyn.071.0083.
↑Fillery, Shaun F.; Richard J. Whitby; George J. Gordon; Tim Luker (1997). "Tandem reactions on a zirconocene template". Pure and Applied Chemistry69 (3): 633–638. doi:10.1351/pac199769030633.
↑Thomas, E.; Dixon, S.; Whitby, R. J. (2006). "A Rearrangement to a Zirconium–Alkenylidene in the Insertion of Dihalocarbenoids and Acetylides into Zirconacycles". Angewandte Chemie International Edition45 (42): 7070–7072. doi:10.1002/anie.200602822. PMID17009379.
↑Ellis, J. E. (2003). "Metal Carbonyl Anions: from [Fe(CO)4]2− to [Hf(CO)6]2− and Beyond". Organometallics22: 3322–3338. doi:10.1021/om030105l.
↑Chum, P. S.; Swogger, K. W. (2008). "Olefin Polymer Technologies-History and Recent Progress at the Dow Chemical Company". Progress in Polymer Science33: 797–819. doi:10.1016/j.progpolymsci.2008.05.003.
↑Klosin, J.; Fontaine, P. P.; Figueroa, R. (2015). "Development of Group Iv Molecular Catalysts for High Temperature Ethylene-Α-Olefin Copolymerization Reactions". Accounts of Chemical Research48 (7): 2004–2016. doi:10.1021/acs.accounts.5b00065. PMID26151395.