A silicide hydride is a mixed anion compound that contains silicide (Si4− or clusters) and hydride (H−) anions. The hydrogen is not bound to silicon in these compounds. These can be classed as interstitial hydrides, Hydrogenated zintl phases, or Zintl phase hydrides.[1] In the related silanides, SiH3− anions or groups occur. Where hydrogen is bonded to the silicon, this is a case of anionic hydride, and where it is bonded to a more complex anion, it would be termed polyanionic hydride.[1]
Silicide hydrides may be prepared by heating a Zintl phase or metal silicide under hydrogen pressure, of perhaps 20 atmospheres.[2]
Properties
In CaSiD1+x the deuterium atom (D) fits in a tetrahedral hole between three calcium and one silicon atoms. The Si-D distance is 1.82 Å, quite a bit further than then a Si-H covalent bond.[3]
List
formula
|
system
|
space group
|
unit cell Å
|
volume
|
density
|
comment
|
reference
|
Li4Si2H
|
orthorhombic
|
Cmmm
|
|
|
|
zigzag Si chains Si-Si 2.39
|
[4]
|
CaSiH
|
|
|
|
|
|
|
[3]
|
CaSiH1+x x<1.2
|
orthorhombic
|
Pnma
|
a = 14.4884, b = 3.8247, c = 11.2509, Z = 3
|
|
|
zigzag Si chains Si-Si 2.47
|
[4]
|
CaAlSiH
|
trigonal
|
|
Z=1
|
|
|
Al-H bond semimetal
|
[4]
|
Ca2SiH2.41
|
amorphous
|
|
a=5.969 b=3.6146 c=6.815
|
|
|
reversible hydrogen storage
|
[4]
|
Ca5Si3H0.53
|
tetrahedral
|
I4/mcm
|
a=7.6394 c=14.7935 Z=4
|
863.33
|
|
|
[1][5]
|
SrSiH1.6
|
orthorhombic
|
Pnma
|
|
|
|
|
[6]
|
SrAlSiH
|
|
P3m1
|
|
|
|
Al-H bond semimetal
|
[4]
|
SrGaSiH
|
trigonal
|
P3m1
|
Z=1
|
|
|
grey; Ga-H 1.71 semimetal
|
[4][7]
|
Sr21Si2O5H21+x
|
cubic
|
Fd3m
|
a = 19.1190
|
|
|
|
[8]
|
BaSiH3.4
|
orthorhombic
|
Pnma
|
|
|
|
|
[6]
|
Ba3Si4Hx (x = 1–2)
|
tetrahedral
|
I4/mcm
|
a ≈ 8.44, c ≈ 11.95, Z = 8
|
|
|
Si46– in a butterfly-shape
|
[2]
|
Ba21Si2O5H21+x
|
cubic
|
Fd3m
|
a = 20.336
|
|
|
|
[8]
|
BaAlSiH
|
|
|
|
|
|
Al-H bond semimetal
|
[4]
|
BaGaSiH
|
trigonal
|
P3m1
|
a=4.2934 c=5.186 Z=1
|
82.79
|
|
grey; air stable; Ga-H 1.71 semimetal
|
[4][7]
|
BaGaSiD
|
trigonal
|
P3m1
|
a=4.2776 c=5.1948 Z=1
|
82.32
|
|
grey
|
[7]
|
LaFeSiH
|
tetragonal
|
P4/nmm
|
a=4.0270 c=8.0374
|
|
|
|
[9]
|
LaFeSiH
|
orthorhombic
|
Cmme
|
a=5.6831 b=5.7037 c=7.9728
|
|
|
at 15K; superconductor Tc=9.7K
|
[10]
|
La3Pd5SiD~1.6
|
orthorhombic
|
Imma
|
a=13.193 b=7.638 c=7.916
|
801.8
|
|
<9.5 bar
|
[11]
|
La3Pd5SiD~2.71
|
orthorhombic
|
Imma
|
a=13.102 b=7.673 c=8.168
|
821.3
|
|
|
[11]
|
La3Pd5SiD~5
|
orthorhombic
|
Pmnb
|
a=13.16 b=7.91 c=8.20
|
854
|
|
>75 bar
|
[11]
|
BaLaSi2D0.80
|
orthorhombic
|
Cmcm
|
a = 4.6443, b = 15.267, c = 6.7630
|
|
|
|
[12]
|
NdScSiH1.5
|
tetrahedral
|
I4/mmm
|
a=4.221 c=16.928 Z=4
|
|
|
|
[13]
|
EuSiH1.8
|
orthorhombic
|
Pnma
|
|
|
|
|
[6]
|
GdMnSiH
|
tetragonal
|
P4/nmm
|
|
|
|
|
[14]
|
GdFeSiH
|
tetragonal
|
P4/nmm
|
a=3.901 c=7.503
|
114.2
|
|
|
[14]
|
GdCoSiH
|
tetragonal
|
P4/nmm
|
a=3.879 c=7.439
|
111.9
|
|
|
[14]
|
References
- ↑ 1.0 1.1 1.2 Haussermann, U.; Kranak, V. F.; Puhakainen, K. (2011). "Hydrogenous Zintl Phases: Interstitial Versus Polyanionic Hydrides". in Fassler, T. F.. Zintl Phases: Principles and Recent Developments. pp. 139–161.
- ↑ 2.0 2.1 Kranak, Verina F.; Benson, Daryn E.; Wollmann, Lukas; Mesgar, Milad; Shafeie, Samrand; Grins, Jekabs; Häussermann, Ulrich (2 February 2015). "Hydrogenous Zintl Phase Ba 3 Si 4 H x ( x = 1–2): Transforming Si 4 "Butterfly" Anions into Tetrahedral Moieties". Inorganic Chemistry 54 (3): 756–764. doi:10.1021/ic501421u. PMID 25247666.
- ↑ 3.0 3.1 Wu, H.; Zhou, W.; Udovic, T. J.; Rush, J. J.; Yildirim, T. (2006-12-07). "Structure and hydrogen bonding in CaSiD 1 + x : Issues about covalent bonding" (in en). Physical Review B 74 (22): 224101. doi:10.1103/PhysRevB.74.224101. ISSN 1098-0121. https://link.aps.org/doi/10.1103/PhysRevB.74.224101.
- ↑ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Häussermann, Ulrich (October 2008). "Coexistence of hydrogen and polyanions in multinary main group element hydrides" (in en). Zeitschrift für Kristallographie 223 (10): 628–635. doi:10.1524/zkri.2008.1016. ISSN 0044-2968. https://www.degruyter.com/document/doi/10.1524/zkri.2008.1016/html.
- ↑ Wu, Hui; Zhou, Wei; Udovic, Terrence J.; Rush, John J.; Yildirim, Taner (July 2008). "Structural variations and hydrogen storage properties of Ca5Si3 with Cr5B3-type structure" (in en). Chemical Physics Letters 460 (4–6): 432–437. doi:10.1016/j.cplett.2008.06.018. https://linkinghub.elsevier.com/retrieve/pii/S0009261408008300.
- ↑ 6.0 6.1 6.2 Armbruster, Markus; Wörle, Michael; Krumeich, Frank; Nesper, Reinhard (October 2009). "Structure and Properties of Hydrogenated Ca, Sr, Ba, and Eu Silicides" (in en). Zeitschrift für anorganische und allgemeine Chemie 635 (12): 1758–1766. doi:10.1002/zaac.200900220. https://onlinelibrary.wiley.com/doi/10.1002/zaac.200900220.
- ↑ 7.0 7.1 7.2 Evans, Michael J.; Holland, Gregory P.; Garcia-Garcia, Francisco J.; Häussermann, Ulrich (2008-09-10). "Polyanionic Gallium Hydrides from AlB 2 -Type Precursors AeGaE (Ae = Ca, Sr, Ba; E = Si, Ge, Sn)" (in en). Journal of the American Chemical Society 130 (36): 12139–12147. doi:10.1021/ja803664y. ISSN 0002-7863. PMID 18698774. https://pubs.acs.org/doi/10.1021/ja803664y.
- ↑ 8.0 8.1 Jehle, Michael; Hoffmann, Anke; Kohlmann, Holger; Scherer, Harald; Röhr, Caroline (February 2015). "The 'sub' metallide oxide hydrides Sr 21 Si 2 O 5 H 12 + x and Ba 21 M 2 O 5 H 12 + x ( M = Zn, Cd, Hg, In, Tl, Si, Ge, Sn, Pb, As, Sb, Bi)" (in en). Journal of Alloys and Compounds 623: 164–177. doi:10.1016/j.jallcom.2014.09.228. https://linkinghub.elsevier.com/retrieve/pii/S092583881402430X.
- ↑ Bernardini, F.; Garbarino, G.; Sulpice, A.; Núñez-Regueiro, M.; Gaudin, E.; Chevalier, B.; Méasson, M.-A.; Cano, A. et al. (2018-03-12). "Iron-based superconductivity extended to the novel silicide LaFeSiH" (in en). Physical Review B 97 (10): 100504. doi:10.1103/PhysRevB.97.100504. ISSN 2469-9950. https://link.aps.org/doi/10.1103/PhysRevB.97.100504.
- ↑ Bernardini, F.; Garbarino, G.; Sulpice, A.; Núñez-Regueiro, M.; Gaudin, E.; Chevalier, B.; Méasson, M.-A.; Cano, A. et al. (2018-03-12). "Iron-based superconductivity extended to the novel silicide LaFeSiH" (in en). Physical Review B 97 (10): 100504. doi:10.1103/PhysRevB.97.100504. ISSN 2469-9950. https://link.aps.org/doi/10.1103/PhysRevB.97.100504.
- ↑ 11.0 11.1 11.2 Tencé, Sophie; Mahon, Tadhg; Gaudin, Etienne; Chevalier, Bernard; Bobet, Jean-Louis; Flacau, Roxana; Heying, Birgit; Rodewald, Ute Ch. et al. (October 2016). "Hydrogenation studies on NdScSi and NdScGe" (in en). Journal of Solid State Chemistry 242: 168–174. doi:10.1016/j.jssc.2016.02.017. https://linkinghub.elsevier.com/retrieve/pii/S0022459616300433.
- ↑ Werwein, Anton; Kohlmann, Holger (2020-07-31). "Synthesis and Crystal Structure of BaLaSi 2 H 0.80" (in en). Zeitschrift für anorganische und allgemeine Chemie 646 (14): 1227–1230. doi:10.1002/zaac.202000152. ISSN 0044-2313.
- ↑ Tencé, Sophie; Mahon, Tadhg; Gaudin, Etienne; Chevalier, Bernard; Bobet, Jean-Louis; Flacau, Roxana; Heying, Birgit; Rodewald, Ute Ch. et al. (October 2016). "Hydrogenation studies on NdScSi and NdScGe" (in en). Journal of Solid State Chemistry 242: 168–174. doi:10.1016/j.jssc.2016.02.017. https://linkinghub.elsevier.com/retrieve/pii/S0022459616300433.
- ↑ 14.0 14.1 14.2 Ovchenkova, I. A.; Nikitin, S. A.; Tereshina, I. S.; Karpenkov, A. Yu.; Ovchenkov, Y. A.; Ćwik, J.; Koshkid’ko, Yu. S.; Drulis, H. (2020-10-14). "Hydrogen-induced extremely large change in Curie temperatures in layered GdTSiH (T = Mn, Fe, Co)" (in en). Journal of Applied Physics 128 (14): 143903. doi:10.1063/5.0020513. ISSN 0021-8979. http://aip.scitation.org/doi/10.1063/5.0020513.
| Original source: https://en.wikipedia.org/wiki/Silicide hydride. Read more |