Skatole
|
Names
|
Preferred IUPAC name
|
Other names
3-Methylindole 4-Methyl-2,3-benzopyrrole
|
Identifiers
|
|
|
|
|
ChEBI
|
|
ChemSpider
|
|
|
|
UNII
|
|
InChI=1S/C9H9N/c1-7-6-10-9-5-3-2-4-8(7)9/h2-6,10H,1H3 YKey: ZFRKQXVRDFCRJG-UHFFFAOYSA-N YInChI=1/C9H9N/c1-7-6-10-9-5-3-2-4-8(7)9/h2-6,10H,1H3 Key: ZFRKQXVRDFCRJG-UHFFFAOYAZ
|
Cc1c[nH]c2ccccc12 c1cccc2c1c(c[nH]2)C
|
Properties
|
|
C9H9N
|
Molar mass
|
131.178 g·mol−1
|
Appearance
|
White crystalline solid
|
Odor
|
Fecal Matter (In low concentrations it can have a pleasant flowery aroma)
|
Melting point
|
93 to 95 °C (199 to 203 °F; 366 to 368 K)
|
Boiling point
|
265 °C (509 °F; 538 K)
|
|
Insoluble
|
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Y verify (what is YN ?)
|
Infobox references
|
|
|
Skatole or 3-methylindole is an organic compound belonging to the indole family. It occurs naturally in the feces of mammals and birds and is the primary contributor to fecal odor. In low concentrations, it has a flowery smell and is found in several flowers and essential oils, including those of orange blossoms, jasmine, and Ziziphus mauritiana. It has also been identified in certain cannabis varieties.[1]
It is used as a fragrance and fixative in many perfumes and as an aroma compound. Its name derives from the Greek root skato-, meaning feces. Skatole was discovered in 1877 by the German physician Ludwig Brieger (1849–1919).[2][3][4]
Original: "Ich habe mich zuerst mit der Untersuchung der flüchtigen Bestandtheile der Excremente aus sauerer Lösung beschäftigt. Es wurden dabei die flüchtigen Fettsäuren: Essigsäure, normale und Isobuttersäure, sowie die aromatischen Substanzen: Phenol, Indol und eine neue dem Indol verwandte Substanz, die ich Skatol nennen werde, erhalten."
Translation: "I was occupied initially with the investigation of the volatile components of excrement in acidic solution. One obtained thereby volatile fatty acids; acetic acid; normal and isobutyric acid; as well as the aromatic substances: phenol, indole and a new substance which is related to indole and which I will name 'skatole'." - Brieger (1878), page 130
Biosynthesis, chemical synthesis, and reactions
Skatole is derived from the amino acid tryptophan in the digestive tract of mammals. Tryptophan is converted to indoleacetic acid, which decarboxylates to give the methylindole.[5][6]
Skatole can be synthesized via the Fischer indole synthesis.[7]
It gives a violet color upon treatment with potassium ferrocyanide.[citation needed]
Skatole, along with the fecal odorant indole, can be neutralized by combining it with other scents, by producing perfumes or air fresheners that lack skatole and indole. In a manner similar to noise-cancelling headphones, the scent produced by the resultant concentrations of skatole and indole relative to other substances in the freshener is thus "in-phase" and perceived as pleasant.[8]
Insect attractant
Skatole is one of many compounds that are attractive to males of various species of orchid bees, which apparently gather the chemical to synthesize pheromones; it is commonly used as bait for these bees for study.[9] It is also known for being an attractant for the Tasmanian grass grub beetle (Aphodius tasmaniae).[10]
Skatole has been shown to be an attractant to gravid mosquitoes in both field and laboratory conditions. Because this compound is present in feces, it is found in combined sewage overflows (CSO), as streams and lakes containing CSO water have untreated human and industrial waste. CSO sites are thus of particular interest when studying mosquito-borne diseases such as West Nile virus.[11]
Animal studies
Skatole occurs naturally in the feces of all species of mammals and birds, and in the bovine rumen.[12]
Skatole has been shown to cause pulmonary edema in goats, sheep, rats, and some strains of mice. It appears to selectively target club cells, which are the major site of cytochrome P450 enzymes in the lungs. These enzymes convert skatole to a reactive intermediate, 3-methyleneindolenine, which damages cells by forming protein adducts (see fog fever).[13]
With the testicular steroid androstenone, skatole is regarded as a principal determinant of boar taint.[14]
Skatole contributes to bad breath.[15]
Application
Skatole is the starting material in the synthesis of atiprosin.
See also
References
- ↑ Oswald, Iain W. H.; Paryani, Twinkle R.; Sosa, Manuel E.; Ojeda, Marcos A.; Altenbernd, Mark R.; Grandy, Jonathan J.; Shafer, Nathan S.; Ngo, Kim et al. (2023-10-12). "Minor, Nonterpenoid Volatile Compounds Drive the Aroma Differences of Exotic Cannabis" (in en). ACS Omega 8 (42): 39203–39216. doi:10.1021/acsomega.3c04496. ISSN 2470-1343. PMID 37901519.
- ↑ Brieger, Ludwig (1877). "Über die flüchtigen Bestandtheile der menschlichen Excremente". Berichte der Deutschen Chemischen Gesellschaft 10: 1027–1032. doi:10.1002/cber.187701001288. http://gallica.bnf.fr/ark:/12148/bpt6k90684b/f1031.image.langEN. Retrieved 3 November 2020.
- ↑ Brieger, Ludwig (1878). "Über die flüchtigen Bestandtheile der menschlichen Excremente". Journal für Praktische Chemie 17: 124–138. doi:10.1002/prac.18780170111. https://books.google.com/books?id=_Q1LAAAAYAAJ&pg=PA124. Retrieved 3 November 2020. "Das Skatol ... (von το σχατος = faeces) ... (Skatole ... (from το σχατος = feces....)".
- ↑ Brieger, Ludwig (1879). "Über Skatol". Berichte der Deutschen Chemischen Gesellschaft 12 (2): 1985–1988. doi:10.1002/cber.187901202206. http://gallica.bnf.fr/ark:/12148/bpt6k906892/f622.image.langEN. Retrieved 3 November 2020.
- ↑ Whitehead, T. R.; Price, N. P.; Drake, H. L.; Cotta, M. A. (25 January 2008). "Catabolic pathway for the production of skatole and indoleacetic acid by the acetogen Clostridium drakei, Clostridium scatologenes, and swine manure". Applied and Environmental Microbiology 74 (6): 1950–3. doi:10.1128/AEM.02458-07. PMID 18223109. Bibcode: 2008ApEnM..74.1950W.
- ↑ Yokoyama, M. T.; Carlson, J. R. (1979). "Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole". The American Journal of Clinical Nutrition 32 (1): 173–178. doi:10.1093/ajcn/32.1.173. PMID 367144.
- ↑ Emil Fischer (1886) "Indole aus Phenylhydrazin" (Indole from phenylhydrazine), Annalen der Chemie, vol. 236, pages 126-151; for Fischer's synthesis of skatole, see page 137. (Fischer was not the first to prepare skatole. It was prepared, via other methods, in 1880 by von Baeyer, and in 1883 by Otto Fischer and German and by Fileti.)
- ↑ Holusha, John (15 July 1990). "Technology; Making Bad Smell Good by Tricking the Nose". The New York Times. https://www.nytimes.com/1990/07/15/business/technology-making-bad-smell-good-by-tricking-the-nose.html.
- ↑ Schiestl, F.P.; Roubik, D.W. (2004). "Odor Compound Detection in Male Euglossine Bees". Journal of Chemical Ecology 29 (1): 253–257. doi:10.1023/A:1021932131526. PMID 12647866.
- ↑ Osborne, G. O.; Penman, D. R.; Chapman, R. B. (1975). "Attraction of Aphodius tasmaniae Hope to skatole.". Australian Journal of Agricultural Research 26 (5): 839–841. doi:10.1071/AR9750839.
- ↑ Beechler, J W., J G Miller, and M S Mulla (1994). "Field evaluation of synthetic compounds mediating oviposition in Culex mosquitoes (Diptera: Culicidae)". J Chem Ecol 20 (2): 281–291. doi:10.1007/BF02064436. PMID 24242053.
- ↑ Yokoyama, M. T.; Carlson, J. R.; Holdeman, L. V. (1977). "Isolation and characteristics of a skatole-producing Lactobacillus sp. from the bovine rumen". Applied and Environmental Microbiology 34 (6): 837–842. doi:10.1128/AEM.34.6.837-842.1977. PMID 563703. Bibcode: 1977ApEnM..34..837Y.
- ↑ Miller, M; Kottler, S; Ramos-Vara, J; Johnson, P; Ganjam, V; Evans, T (2003). "3-Methylindole Induces Transient Olfactory Mucosal Injury in Ponies". Veterinary Pathology 40 (4): 363–70. doi:10.1354/vp.40-4-363. PMID 12824507.
- ↑ Wesoly, R.; Weiler, U. (2012). "Nutritional Influences on Skatole Formation and Skatole Metabolism in the Pig.". Animals 2 (2): 221–242. doi:10.3390/ani2020221. PMID 26486918.
- ↑ Franklin, Deborah (1 May 2013). "To Beat Bad Breath, Keep the Bacteria in Your Mouth Happy". Scientific American 308 (5): 30, 32. doi:10.1038/scientificamerican0513-30. PMID 23627212. https://www.scientificamerican.com/article/beat-bad-breath-keep-mouth-bacteria-happy. Retrieved 3 November 2020.
| Original source: https://en.wikipedia.org/wiki/Skatole. Read more |