In mathematics, in linear algebra and functional analysis, a cyclic subspace is a certain special subspace of a vector space associated with a vector in the vector space and a linear transformation of the vector space. The cyclic subspace associated with a vector v in a vector space V and a linear transformation T of V is called the T-cyclic subspace generated by v. The concept of a cyclic subspace is a basic component in the formulation of the cyclic decomposition theorem in linear algebra.
Let [math]\displaystyle{ T:V\rightarrow V }[/math] be a linear transformation of a vector space [math]\displaystyle{ V }[/math] and let [math]\displaystyle{ v }[/math] be a vector in [math]\displaystyle{ V }[/math]. The [math]\displaystyle{ T }[/math]-cyclic subspace of [math]\displaystyle{ V }[/math] generated by [math]\displaystyle{ v }[/math], denoted [math]\displaystyle{ Z(v;T) }[/math], is the subspace of [math]\displaystyle{ V }[/math] generated by the set of vectors [math]\displaystyle{ \{ v, T(v), T^2(v), \ldots, T^r(v), \ldots\} }[/math]. In the case when [math]\displaystyle{ V }[/math] is a topological vector space, [math]\displaystyle{ v }[/math] is called a cyclic vector for [math]\displaystyle{ T }[/math] if [math]\displaystyle{ Z(v;T) }[/math] is dense in [math]\displaystyle{ V }[/math]. For the particular case of finite-dimensional spaces, this is equivalent to saying that [math]\displaystyle{ Z(v;T) }[/math] is the whole space [math]\displaystyle{ V }[/math]. [1]
There is another equivalent definition of cyclic spaces. Let [math]\displaystyle{ T:V\rightarrow V }[/math] be a linear transformation of a topological vector space over a field [math]\displaystyle{ F }[/math] and [math]\displaystyle{ v }[/math] be a vector in [math]\displaystyle{ V }[/math]. The set of all vectors of the form [math]\displaystyle{ g(T)v }[/math], where [math]\displaystyle{ g(x) }[/math] is a polynomial in the ring [math]\displaystyle{ F[x] }[/math] of all polynomials in [math]\displaystyle{ x }[/math] over [math]\displaystyle{ F }[/math], is the [math]\displaystyle{ T }[/math]-cyclic subspace generated by [math]\displaystyle{ v }[/math].[1]
The subspace [math]\displaystyle{ Z(v;T) }[/math] is an invariant subspace for [math]\displaystyle{ T }[/math], in the sense that [math]\displaystyle{ T Z(v;T) \subset Z(v;T) }[/math].
Let [math]\displaystyle{ T:V\rightarrow V }[/math] be a linear transformation of a [math]\displaystyle{ n }[/math]-dimensional vector space [math]\displaystyle{ V }[/math] over a field [math]\displaystyle{ F }[/math] and [math]\displaystyle{ v }[/math] be a cyclic vector for [math]\displaystyle{ T }[/math]. Then the vectors
form an ordered basis for [math]\displaystyle{ V }[/math]. Let the characteristic polynomial for [math]\displaystyle{ T }[/math] be
Then
Therefore, relative to the ordered basis [math]\displaystyle{ B }[/math], the operator [math]\displaystyle{ T }[/math] is represented by the matrix
This matrix is called the companion matrix of the polynomial [math]\displaystyle{ p(x) }[/math].[1]
Original source: https://en.wikipedia.org/wiki/Cyclic subspace.
Read more |