Del in cylindrical and spherical coordinates

From HandWiki - Reading time: 15 min


Short description: Mathematical gradient operator in certain coordinate systems

This is a list of some vector calculus formulae for working with common curvilinear coordinate systems.

Notes

  • This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ):
    • The polar angle is denoted by θ[0,π]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.
    • The azimuthal angle is denoted by φ[0,2π]: it is the angle between the x-axis and the projection of the radial vector onto the xy-plane.
  • The function atan2(y, x) can be used instead of the mathematical function arctan(y/x) owing to its domain and image. The classical arctan function has an image of (−π/2, +π/2), whereas atan2 is defined to have an image of (−π, π].

Coordinate conversions

Conversion between Cartesian, cylindrical, and spherical coordinates[1]
From
Cartesian Cylindrical Spherical
To Cartesian x=xy=yz=z x=ρcosφy=ρsinφz=z x=rsinθcosφy=rsinθsinφz=rcosθ
Cylindrical ρ=x2+y2φ=arctan(yx)z=z ρ=ρφ=φz=z ρ=rsinθφ=φz=rcosθ
Spherical r=x2+y2+z2θ=arctan(x2+y2z)φ=arctan(yx) r=ρ2+z2θ=arctan(ρz)φ=φ r=rθ=θφ=φ

Note that the operation arctan(AB) must be interpreted as the two-argument inverse tangent, atan2.

Unit vector conversions

Conversion between unit vectors in Cartesian, cylindrical, and spherical coordinate systems in terms of destination coordinates[1]
Cartesian Cylindrical Spherical
Cartesian 𝐱^=𝐱^𝐲^=𝐲^𝐳^=𝐳^ 𝐱^=cosφρ^sinφφ^𝐲^=sinφρ^+cosφφ^𝐳^=𝐳^ 𝐱^=sinθcosφ𝐫^+cosθcosφθ^sinφφ^𝐲^=sinθsinφ𝐫^+cosθsinφθ^+cosφφ^𝐳^=cosθ𝐫^sinθθ^
Cylindrical ρ^=x𝐱^+y𝐲^x2+y2φ^=y𝐱^+x𝐲^x2+y2𝐳^=𝐳^ ρ^=ρ^φ^=φ^𝐳^=𝐳^ ρ^=sinθ𝐫^+cosθθ^φ^=φ^𝐳^=cosθ𝐫^sinθθ^
Spherical 𝐫^=x𝐱^+y𝐲^+z𝐳^x2+y2+z2θ^=(x𝐱^+y𝐲^)z(x2+y2)𝐳^x2+y2+z2x2+y2φ^=y𝐱^+x𝐲^x2+y2 𝐫^=ρρ^+z𝐳^ρ2+z2θ^=zρ^ρ𝐳^ρ2+z2φ^=φ^ 𝐫^=𝐫^θ^=θ^φ^=φ^
Conversion between unit vectors in Cartesian, cylindrical, and spherical coordinate systems in terms of source coordinates
Cartesian Cylindrical Spherical
Cartesian 𝐱^=𝐱^𝐲^=𝐲^𝐳^=𝐳^ 𝐱^=xρ^yφ^x2+y2𝐲^=yρ^+xφ^x2+y2𝐳^=𝐳^ 𝐱^=x(x2+y2𝐫^+zθ^)yx2+y2+z2φ^x2+y2x2+y2+z2𝐲^=y(x2+y2𝐫^+zθ^)+xx2+y2+z2φ^x2+y2x2+y2+z2𝐳^=z𝐫^x2+y2θ^x2+y2+z2
Cylindrical ρ^=cosφ𝐱^+sinφ𝐲^φ^=sinφ𝐱^+cosφ𝐲^𝐳^=𝐳^ ρ^=ρ^φ^=φ^𝐳^=𝐳^ ρ^=ρ𝐫^+zθ^ρ2+z2φ^=φ^𝐳^=z𝐫^ρθ^ρ2+z2
Spherical 𝐫^=sinθ(cosφ𝐱^+sinφ𝐲^)+cosθ𝐳^θ^=cosθ(cosφ𝐱^+sinφ𝐲^)sinθ𝐳^φ^=sinφ𝐱^+cosφ𝐲^ 𝐫^=sinθρ^+cosθ𝐳^θ^=cosθρ^sinθ𝐳^φ^=φ^ 𝐫^=𝐫^θ^=θ^φ^=φ^

Del formula

Table with the del operator in cartesian, cylindrical and spherical coordinates
Operation Cartesian coordinates (x, y, z) Cylindrical coordinates (ρ, φ, z) Spherical coordinates (r, θ, φ),
where θ is the polar angle and φ is the azimuthal angleα
Vector field A Ax𝐱^+Ay𝐲^+Az𝐳^ Aρρ^+Aφφ^+Az𝐳^ Ar𝐫^+Aθθ^+Aφφ^
Gradient f[1] fx𝐱^+fy𝐲^+fz𝐳^ fρρ^+1ρfφφ^+fz𝐳^ fr𝐫^+1rfθθ^+1rsinθfφφ^
Divergence ∇ ⋅ A[1] Axx+Ayy+Azz 1ρ(ρAρ)ρ+1ρAφφ+Azz 1r2(r2Ar)r+1rsinθθ(Aθsinθ)+1rsinθAφφ
Curl ∇ × A[1] (AzyAyz)𝐱^+(AxzAzx)𝐲^+(AyxAxy)𝐳^ (1ρAzφAφz)ρ^+(AρzAzρ)φ^+1ρ((ρAφ)ρAρφ)𝐳^ 1rsinθ(θ(Aφsinθ)Aθφ)𝐫^+1r(1sinθArφr(rAφ))θ^+1r(r(rAθ)Arθ)φ^
Laplace operator 2f ≡ ∆f[1] 2fx2+2fy2+2fz2 1ρρ(ρfρ)+1ρ22fφ2+2fz2 1r2r(r2fr)+1r2sinθθ(sinθfθ)+1r2sin2θ2fφ2
Vector gradient Aβ Axx𝐱^𝐱^+Axy𝐱^𝐲^+Axz𝐱^𝐳^+Ayx𝐲^𝐱^+Ayy𝐲^𝐲^+Ayz𝐲^𝐳^+Azx𝐳^𝐱^+Azy𝐳^𝐲^+Azz𝐳^𝐳^ Aρρρ^ρ^+(1ρAρφAφρ)ρ^φ^+Aρzρ^𝐳^+Aφρφ^ρ^+(1ρAφφ+Aρρ)φ^φ^+Aφzφ^𝐳^+Azρ𝐳^ρ^+1ρAzφ𝐳^φ^+Azz𝐳^𝐳^ Arr𝐫^𝐫^+(1rArθAθr)𝐫^θ^+(1rsinθArφAφr)𝐫^φ^+Aθrθ^𝐫^+(1rAθθ+Arr)θ^θ^+(1rsinθAθφcotθAφr)θ^φ^+Aφrφ^𝐫^+1rAφθφ^θ^+(1rsinθAφφ+cotθAθr+Arr)φ^φ^
Vector Laplacian 2A ≡ ∆A[2] 2Ax𝐱^+2Ay𝐲^+2Az𝐳^

(2AρAρρ22ρ2Aφφ)ρ^+(2AφAφρ2+2ρ2Aρφ)φ^+2Az𝐳^

(2Ar2Arr22r2sinθ(Aθsinθ)θ2r2sinθAφφ)𝐫^+(2AθAθr2sin2θ+2r2Arθ2cosθr2sin2θAφφ)θ^+(2AφAφr2sin2θ+2r2sinθArφ+2cosθr2sin2θAθφ)φ^

Directional derivative (A ⋅ ∇)B[3] 𝐀Bx𝐱^+𝐀By𝐲^+𝐀Bz𝐳^ (AρBρρ+AφρBρφ+AzBρzAφBφρ)ρ^+(AρBφρ+AφρBφφ+AzBφz+AφBρρ)φ^+(AρBzρ+AφρBzφ+AzBzz)𝐳^

(ArBrr+AθrBrθ+AφrsinθBrφAθBθ+AφBφr)𝐫^+(ArBθr+AθrBθθ+AφrsinθBθφ+AθBrrAφBφcotθr)θ^+(ArBφr+AθrBφθ+AφrsinθBφφ+AφBrr+AφBθcotθr)φ^

Tensor divergence ∇ ⋅ Tγ

(Txxx+Tyxy+Tzxz)𝐱^+(Txyx+Tyyy+Tzyz)𝐲^+(Txzx+Tyzy+Tzzz)𝐳^

[Tρρρ+1ρTφρφ+Tzρz+1ρ(TρρTφφ)]ρ^+[Tρφρ+1ρTφφφ+Tzφz+1ρ(Tρφ+Tφρ)]φ^+[Tρzρ+1ρTφzφ+Tzzz+Tρzρ]𝐳^

[Trrr+2Trrr+1rTθrθ+cotθrTθr+1rsinθTφrφ1r(Tθθ+Tφφ)]𝐫^+[Trθr+2Trθr+1rTθθθ+cotθrTθθ+1rsinθTφθφ+TθrrcotθrTφφ]θ^+[Trφr+2Trφr+1rTθφθ+1rsinθTφφφ+Tφrr+cotθr(Tθφ+Tφθ)]φ^

  • This page uses θ for the polar angle and φ for the azimuthal angle, which is common notation in physics. The source that is used for these formulae uses θ for the azimuthal angle and φ for the polar angle, which is common mathematical notation. In order to get the mathematics formulae, switch θ and φ in the formulae shown in the table above.
  • Defined in Cartesian coordinates as i𝐀𝐞i. An alternative definition is 𝐞ii𝐀.
  • Defined in Cartesian coordinates as 𝐞ii𝐓. An alternative definition is i𝐓𝐞i.

Differential elements

Operation Cartesian coordinates
(x, y, z)
Cylindrical coordinates
(ρ, φ, z)
Spherical coordinatesα
(r, θ, φ)
Differential displacement d[1] dx𝐱^+dy𝐲^+dz𝐳^ dρρ^+ρdφφ^+dz𝐳^ dr𝐫^+rdθθ^+rsinθdφφ^
Differential normal area dS dydz𝐱^+dxdz𝐲^+dxdy𝐳^ ρdφdzρ^+dρdzφ^+ρdρdφ𝐳^ r2sinθdθdφ𝐫^+rsinθdrdφθ^+rdrdθφ^
Differential volume dV[1] dxdydz ρdρdφdz r2sinθdrdθdφ

Calculation rules

  1. divgradff2f
  2. curlgradf×f=𝟎
  3. divcurl𝐀(×𝐀)=0
  4. curlcurl𝐀×(×𝐀)=(𝐀)2𝐀 (Lagrange's formula for del)
  5. 2(fg)=f2g+2fg+g2f
  6. 2(𝐏𝐐)=𝐐2𝐏𝐏2𝐐+2[(𝐏)𝐐+𝐏××𝐐] (From [4] )

Cartesian derivation

File:Nabla cartesian.svg

div𝐀=limV0V𝐀d𝐒VdV=[Ax(x+dx)Ax(x)]dydz+[Ay(y+dy)Ay(y)]dxdz+[Az(z+dz)Az(z)]dxdydxdydz=Axx+Ayy+Azz

(curl𝐀)x=limSx^0S𝐀dSdS=[Az(y+dy)Az(y)]dz[Ay(z+dz)Ay(z)]dydydz=AzyAyz

The expressions for (curl𝐀)y and (curl𝐀)z are found in the same way.

Cylindrical derivation

File:Nabla cylindrical2.svg

div𝐀=limV0V𝐀d𝐒VdV=[Aρ(ρ+dρ)(ρ+dρ)Aρ(ρ)ρ]dϕdz+[Aϕ(ϕ+dϕ)Aϕ(ϕ)]dρdz+[Az(z+dz)Az(z)]dρ(ρ+dρ/2)dϕρdϕdρdz=1ρ(ρAρ)ρ+1ρAϕϕ+Azz

(curl𝐀)ρ=limSρ^0S𝐀dSdS=Aϕ(z)(ρ+dρ)dϕAϕ(z+dz)(ρ+dρ)dϕ+Az(ϕ+dϕ)dzAz(ϕ)dz(ρ+dρ)dϕdz=Aϕz+1ρAzϕ

(curl𝐀)ϕ=limSϕ^0S𝐀dSdS=Az(ρ)dzAz(ρ+dρ)dz+Aρ(z+dz)dρAρ(z)dρdρdz=Azρ+Aρz

(curl𝐀)z=limSz^0S𝐀dSdS=Aρ(ϕ)dρAρ(ϕ+dϕ)dρ+Aϕ(ρ+dρ)(ρ+dρ)dϕAϕ(ρ)ρdϕρdρdϕ=1ρAρϕ+1ρ(ρAϕ)ρ

curl𝐀=(curl𝐀)ρρ^+(curl𝐀)ϕϕ^+(curl𝐀)zz^=(1ρAzϕAϕz)ρ^+(AρzAzρ)ϕ^+1ρ((ρAϕ)ρAρϕ)z^

Spherical derivation

File:Nabla spherical2.svg div𝐀=limV0V𝐀d𝐒VdV=[Ar(r+dr)(r+dr)2Ar(r)r2]sinθdθdϕ+[Aθ(θ+dθ)sin(θ+dθ)Aθ(θ)sinθ]rdrdϕ+[Aϕ(ϕ+dϕ)Aϕ(ϕ)]rdrdθdrrdθrsinθdϕ=1r2(r2Ar)r+1rsinθ(Aθsinθ)θ+1rsinθAϕϕ

(curl𝐀)r=limSr^0S𝐀dSdS=Aθ(ϕ)rdθ+Aϕ(θ+dθ)rsin(θ+dθ)dϕAθ(ϕ+dϕ)rdθAϕ(θ)rsin(θ)dϕrdθrsinθdϕ=1rsinθ(Aϕsinθ)θ1rsinθAθϕ

(curl𝐀)θ=limSθ^0S𝐀dSdS=Aϕ(r)rsinθdϕ+Ar(ϕ+dϕ)drAϕ(r+dr)(r+dr)sinθdϕAr(ϕ)drdrrsinθdϕ=1rsinθArϕ1r(rAϕ)r

(curl𝐀)ϕ=limSϕ^0S𝐀dSdS=Ar(θ)dr+Aθ(r+dr)(r+dr)dθAr(θ+dθ)drAθ(r)rdθrdrdθ=1r(rAθ)r1rArθ

curl𝐀=(curl𝐀)rr^+(curl𝐀)θθ^+(curl𝐀)ϕϕ^=1rsinθ((Aϕsinθ)θAθϕ)r^+1r(1sinθArϕ(rAϕ)r)θ^+1r((rAθ)rArθ)ϕ^

Unit vector conversion formula

The unit vector of a coordinate parameter u is defined in such a way that a small positive change in u causes the position vector 𝐫 to change in 𝐮 direction.

Therefore, 𝐫u=su𝐮 where s is the arc length parameter.

For two sets of coordinate systems ui and vj, according to chain rule, d𝐫=i𝐫uidui=isui𝐮^idui=jsvj𝐯^jdvj=jsvj𝐯^jivjuidui=ijsvjvjui𝐯^jdui.

Now, we isolate the ith component. For ik, let duk=0. Then divide on both sides by dui to get: sui𝐮^i=jsvjvjui𝐯^j.

See also

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Griffiths, David J. (2012). Introduction to Electrodynamics. Pearson. ISBN 978-0-321-85656-2. 
  2. Arfken, George; Weber, Hans; Harris, Frank (2012). Mathematical Methods for Physicists (Seventh ed.). Academic Press. p. 192. ISBN 9789381269558. 
  3. Weisstein, Eric W.. "Convective Operator". Mathworld. http://mathworld.wolfram.com/ConvectiveOperator.html. 
  4. Fernández-Guasti, M. (2012). "Green's Second Identity for Vector Fields". ISRN Mathematical Physics (Hindawi Limited) 2012: 1–7. doi:10.5402/2012/973968. ISSN 2090-4681. 




Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Del_in_cylindrical_and_spherical_coordinates
1 |
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF