From HandWiki - Reading time: 2 min
This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. (March 2023) (Learn how and when to remove this template message) |
In mathematics, a dependence relation is a binary relation which generalizes the relation of linear dependence.
Let [math]\displaystyle{ X }[/math] be a set. A (binary) relation [math]\displaystyle{ \triangleleft }[/math] between an element [math]\displaystyle{ a }[/math] of [math]\displaystyle{ X }[/math] and a subset [math]\displaystyle{ S }[/math] of [math]\displaystyle{ X }[/math] is called a dependence relation, written [math]\displaystyle{ a \triangleleft S }[/math], if it satisfies the following properties:
Given a dependence relation [math]\displaystyle{ \triangleleft }[/math] on [math]\displaystyle{ X }[/math], a subset [math]\displaystyle{ S }[/math] of [math]\displaystyle{ X }[/math] is said to be independent if [math]\displaystyle{ a \ntriangleleft S - \lbrace a \rbrace }[/math] for all [math]\displaystyle{ a \in S. }[/math] If [math]\displaystyle{ S \subseteq T }[/math], then [math]\displaystyle{ S }[/math] is said to span [math]\displaystyle{ T }[/math] if [math]\displaystyle{ t \triangleleft S }[/math] for every [math]\displaystyle{ t \in T. }[/math] [math]\displaystyle{ S }[/math] is said to be a basis of [math]\displaystyle{ X }[/math] if [math]\displaystyle{ S }[/math] is independent and [math]\displaystyle{ S }[/math] spans [math]\displaystyle{ X. }[/math]
Remark. If [math]\displaystyle{ X }[/math] is a non-empty set with a dependence relation [math]\displaystyle{ \triangleleft }[/math], then [math]\displaystyle{ X }[/math] always has a basis with respect to [math]\displaystyle{ \triangleleft. }[/math] Furthermore, any two bases of [math]\displaystyle{ X }[/math] have the same cardinality.