This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. (March 2023) (Learn how and when to remove this template message) |
In mathematics, a dependence relation is a binary relation which generalizes the relation of linear dependence.
Let [math]\displaystyle{ X }[/math] be a set. A (binary) relation [math]\displaystyle{ \triangleleft }[/math] between an element [math]\displaystyle{ a }[/math] of [math]\displaystyle{ X }[/math] and a subset [math]\displaystyle{ S }[/math] of [math]\displaystyle{ X }[/math] is called a dependence relation, written [math]\displaystyle{ a \triangleleft S }[/math], if it satisfies the following properties:
Given a dependence relation [math]\displaystyle{ \triangleleft }[/math] on [math]\displaystyle{ X }[/math], a subset [math]\displaystyle{ S }[/math] of [math]\displaystyle{ X }[/math] is said to be independent if [math]\displaystyle{ a \ntriangleleft S - \lbrace a \rbrace }[/math] for all [math]\displaystyle{ a \in S. }[/math] If [math]\displaystyle{ S \subseteq T }[/math], then [math]\displaystyle{ S }[/math] is said to span [math]\displaystyle{ T }[/math] if [math]\displaystyle{ t \triangleleft S }[/math] for every [math]\displaystyle{ t \in T. }[/math] [math]\displaystyle{ S }[/math] is said to be a basis of [math]\displaystyle{ X }[/math] if [math]\displaystyle{ S }[/math] is independent and [math]\displaystyle{ S }[/math] spans [math]\displaystyle{ X. }[/math]
Remark. If [math]\displaystyle{ X }[/math] is a non-empty set with a dependence relation [math]\displaystyle{ \triangleleft }[/math], then [math]\displaystyle{ X }[/math] always has a basis with respect to [math]\displaystyle{ \triangleleft. }[/math] Furthermore, any two bases of [math]\displaystyle{ X }[/math] have the same cardinality.
Original source: https://en.wikipedia.org/wiki/Dependence relation.
Read more |