Categories
  Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Descent direction

From HandWiki - Reading time: 2 min

In optimization, a descent direction is a vector [math]\displaystyle{ \mathbf{p}\in\mathbb R^n }[/math] that points towards a local minimum [math]\displaystyle{ \mathbf{x}^* }[/math] of an objective function [math]\displaystyle{ f:\mathbb R^n\to\mathbb R }[/math]. Computing [math]\displaystyle{ \mathbf{x}^* }[/math] by an iterative method, such as line search defines a descent direction [math]\displaystyle{ \mathbf{p}_k\in\mathbb R^n }[/math] at the [math]\displaystyle{ k }[/math]th iterate to be any [math]\displaystyle{ \mathbf{p}_k }[/math] such that [math]\displaystyle{ \langle\mathbf{p}_k,\nabla f(\mathbf{x}_k)\rangle \lt 0 }[/math], where [math]\displaystyle{ \langle , \rangle }[/math] denotes the inner product. The motivation for such an approach is that small steps along [math]\displaystyle{ \mathbf{p}_k }[/math] guarantee that [math]\displaystyle{ \displaystyle f }[/math] is reduced, by Taylor's theorem.

Using this definition, the negative of a non-zero gradient is always a descent direction, as [math]\displaystyle{ \langle -\nabla f(\mathbf{x}_k), \nabla f(\mathbf{x}_k) \rangle = -\langle \nabla f(\mathbf{x}_k), \nabla f(\mathbf{x}_k) \rangle \lt 0 }[/math].

Numerous methods exist to compute descent directions, all with differing merits, such as gradient descent or the conjugate gradient method.

More generally, if [math]\displaystyle{ P }[/math] is a positive definite matrix, then [math]\displaystyle{ p_k = -P \nabla f(x_k) }[/math] is a descent direction at [math]\displaystyle{ x_k }[/math].[1] This generality is used in preconditioned gradient descent methods.

See also

References

  1. J. M. Ortega and W. C. Rheinbold (1970). Iterative Solution of Nonlinear Equations in Several Variables. pp. 243. doi:10.1137/1.9780898719468. 




Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Descent_direction
2 views | Status: cached on October 20 2024 12:50:38
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF