Short description: Metastable cubic crystalline variant of ice
Ice Ic (pronounced "ice one c" or "ice I c") is a metastable cubic crystalline variant of ice. Hans König was the first to identify and deduce the structure of ice Ic.[1] The oxygen atoms in ice Ic are arranged in a diamond structure and is extremely similar to ice Ih having nearly identical densities and the same lattice constant along the hexagonal puckered-planes.[2] It forms at temperatures between 130 and 220 kelvins (−143 and −53 degrees Celsius) upon cooling, and can exist up to 240 K (−33 °C) upon warming,[3][4] when it transforms into ice Ih.
Apart from forming from supercooled water,[5] ice Ic has also been reported to form from amorphous ice[2] as well as from the high-pressure ices II, III and V.[6] It can form in and is occasionally present in the upper atmosphere[7] and is believed to be responsible for the observation of Scheiner's halo, a rare ring that occurs near 28 degrees from the Sun or the Moon.[8]
Ordinary water ice is known as ice Ih (in the Bridgman nomenclature). Different types of ice, from ice II to ice XIX,[9] have been created in the laboratory at different temperatures and pressures.
Some authors have expressed doubts whether ice Ic really has a cubic crystal system, claiming that it is merely stacking-disordered ice I (“ice Isd”),[10][11][12] and it has been dubbed the ″most faceted ice phase in a literal and a more general sense.″[13]
However, in 2020, two research groups individually prepared ice Ic without stacking disorder. Komatsu et al. prepared C2 hydrate at high pressure and decompressed it at 100 K to make hydrogen molecules extracted from the structure, resulting in ice Ic without stacking disorder.[14] Del Rosso et al. prepared ice XVII from C0 hydrate and heated it at 0 GPa to obtain pure ice Ic without stacking disorder.[15] Pure ice Ic prepared in the latter method transforms into ice Ih at 226 K with an enthalpy change of -37.7 J/mol.[16]
See also
- Ice I, for the other crystalline form of ice
References
- ↑ König, H. (1943). "Eine kubische Eismodifikation" (in de). Zeitschrift für Kristallographie 105 (1): 279–286. doi:10.1524/zkri.1943.105.1.279.
- ↑ 2.0 2.1 Dowell, L. G.; Rinfret, A. P. (December 1960). "Low-Temperature Forms of Ice as Studied by X-Ray Diffraction" (in en). Nature 188 (4757): 1144–1148. doi:10.1038/1881144a0. ISSN 0028-0836. Bibcode: 1960Natur.188.1144D.
- ↑ Murray, B.J.; Bertram, A. K. (2006). "Formation and stability of cubic ice in water droplets". Phys. Chem. Chem. Phys. 8 (1): 186–192. doi:10.1039/b513480c. PMID 16482260. Bibcode: 2006PCCP....8..186M. https://open.library.ubc.ca/media/download/pdf/52383/1.0041852/3.
- ↑ Murray, B.J. (2008). "The Enhanced formation of cubic ice in aqueous organic acid droplets". Env. Res. Lett. 3 (2): 025008. doi:10.1088/1748-9326/3/2/025008. Bibcode: 2008ERL.....3b5008M.
- ↑ Mayer, E.; Hallbrucker, A. (1987). "Cubic ice from liquid water". Nature 325 (12): 601–602. doi:10.1038/325601a0. Bibcode: 1987Natur.325..601M.
- ↑ Bertie, J. E.; Calvert, L. D.; Whalley, E. (1963). "Transformations of Ice II, Ice III, and Ice V at Atmospheric Pressure". J. Chem. Phys. 38 (4): 840–846. doi:10.1063/1.1733772. Bibcode: 1963JChPh..38..840B.
- ↑ Murray, Benjamin J.; Knopf, Daniel A.; Bertram, Allan K. (March 2005). "The formation of cubic ice under conditions relevant to Earth's atmosphere" (in en). Nature 434 (7030): 202–205. doi:10.1038/nature03403. ISSN 0028-0836. PMID 15758996. Bibcode: 2005Natur.434..202M.
- ↑ Whalley, E. (1981). "Scheiner's Halo: Evidence for Ice Ic in the Atmosphere". Science 211 (4480): 389–390. doi:10.1126/science.211.4480.389. PMID 17748273. Bibcode: 1981Sci...211..389W.
- ↑ Flatz, Christian; Hohenwarter, Stefan. "Neue kristalline Eisform aus Innsbruck" (in de). https://www.uibk.ac.at/newsroom/neue-kristalline-eisform-aus-innsbruck.html.de.
- ↑ Murray, Benjamin J.; Salzmann, Christoph G.; Heymsfield, Andrew J.; Dobbie, Steven; Neely, Ryan R.; Cox, Christopher J. (2015). "Trigonal Ice Crystals in Earth's Atmosphere". Bulletin of the American Meteorological Society 96 (9): 1519–1531. doi:10.1175/BAMS-D-13-00128.1. Bibcode: 2015BAMS...96.1519M. http://eprints.whiterose.ac.uk/86859/8/MurrayTrigonalIceCrystals.pdf.
- ↑ Chaplin, Martin (15 September 2019). "Stacking disordered ice; Ice Isd". London South Bank University. http://www1.lsbu.ac.uk/water/ice1h1c.html.
- ↑ Malkin, Tamsin L.; Murray, Benjamin J.; Salzmann, Christoph G.; Molinero, Valeria; Pickering, Steven J.; Whale, Thomas F. (2015). "Stacking disorder in ice I". Physical Chemistry Chemical Physics 17 (1): 60–76. doi:10.1039/C4CP02893G. PMID 25380218.
- ↑ Kuhs, W. F.; Sippel, C.; Falenty, A.; Hansen, T. C. (2012). "Extent and relevance of stacking disorder in "ice Ic"". Proceedings of the National Academy of Sciences of the United States of America 109 (52): 21259–21264. doi:10.1073/pnas.1210331110. PMID 23236184. Bibcode: 2012PNAS..10921259K.
- ↑ Komatsu K, Machida S, Noritake F, Hattori T, Sano-Furukawa A, Yamane R (2020). "Ice Ic without stacking disorder by evacuating hydrogen from hydrogen hydrate.". Nat Commun 11 (1): 464. doi:10.1038/s41467-020-14346-5. PMID 32015342. Bibcode: 2020NatCo..11..464K.
- ↑ Del Rosso L, Celli M, Grazzi F, Catti M, Hansen TC, Fortes AD (2020). "Cubic ice Ic without stacking defects obtained from ice XVII.". Nat Mater 19 (6): 663–668. doi:10.1038/s41563-020-0606-y. PMID 32015533. Bibcode: 2020NatMa..19..663D. https://pubmed.ncbi.nlm.nih.gov/32015533.
- ↑ Tonauer CM, Yamashita K, Rosso LD, Celli M, Loerting T (2023). "Enthalpy Change from Pure Cubic Ice Ic to Hexagonal Ice Ih.". J Phys Chem Lett 14 (21): 5055–5060. doi:10.1021/acs.jpclett.3c00408. PMID 37227149.
| Original source: https://en.wikipedia.org/wiki/Ice Ic. Read more |