According to the Planetary and Space Science Centre (PASSC) at the University of New Brunswick in Canada, there are 190 confirmed impact structures on Earth. Each is recorded in a database called the Earth Impact Database (EID).[1]
The following tables list geological features on Earth that are known impact events as well as possible, but for which there is currently no confirming scientific evidence in the peer-reviewed literature, impact events. In order for a structure to be confirmed as an impact crater, it must meet a stringent set of well-established criteria. Some proposed impact structures are likely to eventually be confirmed, whereas others are likely to be shown to have been misidentified (see below). Recent extensive surveys have been done for Australian (2005),[2] African (2014),[3] and South American (2015)[4] craters, as well as those in the Arab world (2016).[5] A book review by A. Crósta and U. Reimold disputes some of the evidence presented for several of the South American structures.[6]
Russia's Lake Cheko is thought by one research group to be the result of the famous Tunguska event, although sediments in the lake have been dated back more than 5,000 years. There is highly speculative conjecture about the supposed Sirente impact (c. 320 ± 90 AD) having caused the Roman emperor Constantine's vision at Milvian Bridge.[328][better source needed]
The Burckle crater and Umm al Binni structure are proposed to be behind the floods that affected Sumerian civilization.[329][330] The Kachchh impact may have been witnessed by the Harappan civilization and mentioned as a fireball in Sanskrit texts.[331]
Shortly after the Hiawatha Crater was discovered, researchers suggested that the impact could have occurred as late as ~12,800 years ago, leading some to associate it with the controversial Younger Dryas impact hypothesis (YDIH).[332] James Kennett, a leading advocate of the YDIH said, "I'd unequivocally predict that this crater is the same age as the Younger Dryas."[333]
These claims were criticised by other scholars. According to impact physicist Mark Boslough writing for Skeptical Inquirer the first reports of the impact released by science journalist Paul Voosen focused on this being a young crater which according to Boslough "set the tone for virtually all the media reporting to follow". Boslough argued, based on evidence and statistical probability, that once the crater has been drilled and researched "it will turn out to be much older." He complained that this important discovery "was tainted by connections to a widely discredited hypothesis and speculations that did not make it through peer review".[333][334] The YDIH has since been refuted comprehensively by a team of earth scientists and impact experts.[335]
A 2022 study using Argon–Argon dating of shocked zircon crystals in impact melt rocks found outwash less than 10 km downstream of the glacier pushed the estimate back to around 57.99 ± 0.54 million years ago, during the late Paleocene.[336][125] Confirmation would require drilling almost one km (3,300 ft) through the ice sheet above the crater to obtain a sample of dateable, solidified impact melt from the crater.
As the trend in the Earth Impact Database for about 26 confirmed craters younger than a million years old shows that almost all are less than two km (1.2 mi) in diameter (except the three km (1.9 mi) Agoudal and four km (2.5 mi) Rio Cuarto), the suggestion that two large craters, Mahuika (20 km (12 mi)) and Burckle (30 km (19 mi)), formed only within the last few millennia has been met with skepticism.[338][339][340] However, the source of the young (less than a million years old) and enormous Australasian strewnfield (c. 790 ka) is suggested to be a crater about 100 km (62 mi) across somewhere in Indochina,[341][342] with Hartung and Koeberl (1994) proposing the elongated 100 km × 35 km (62 mi × 22 mi) Tonlé Sap lake in Cambodia (visible in the map at the side) as a suspect structure.[343]
Some confirmed impacts like Sudbury or Chicxulub are also sources of magnetic anomalies[347] and/or gravity anomalies. The magnetic anomalies Bangui and Jackpine Creek,[143] the gravity anomalies Wilkes Land crater and Falkland Islands,[348] and others have been considered as being of impact origin. Bangui apparently has been discredited,[25][349] but appears again in a 2014 table of unconfirmed structures in Africa by Reimold and Koeberl.[3]
Several anomalies in Williston Basin were identified by Swatzky in the 1970s as astroblemes including Viewfield, Red Wing Creek, Eagle Butte, Dumas, and Hartney, of which only the last two are unconfirmed.[92]
The Eltanin impact has been confirmed (via an iridium anomaly and meteoritic material from ocean cores) but, as it fell into the Pacific Ocean, apparently no crater was formed. The age of Silverpit and the confirmed Boltysh crater (65.17 ± 0.64 Ma), as well as their latitude, has led to the speculative hypothesis that there may have been several impacts during the KT boundary.[350][351] Of the five oceans in descending order by area, namely the Pacific, Atlantic, Indian, Antarctic, and Arctic, only the smallest (the Arctic) does not yet have a proposed unconfirmed impact crater.
Craters larger than 100 kilometres (62 mi) in the Phanerozoic (after 541 Ma) are notable for their size as well as for the possible coeval events associated with them especially the major extinction events.
However, other extinction theories employ coeval periods of massive volcanism such as the Siberian Traps (Permian-Triassic) and Deccan Traps (Cretaceous-Paleogene).
Undiscovered but inferred
Australasian strewnfield. Shaded areas represent tektite finds.
There is geological evidence for impact events having taken place on Earth on certain specific occasions, which should have formed craters, but for which no impact craters have been found. In some cases this is because of erosion and Earth's crust having been recycled through plate tectonics, in others likely because exploration of the Earth's surface is incomplete, or because no actual crater was formed because the impacting object exploded as a cosmic air burst. Typically the ages are already known and the diameters can be estimated.
Some geological processes can result in circular or near-circular features that may be mistaken for impact craters. Some examples are calderas, maars, sinkholes, glacial cirques, igneous intrusions, ring dikes, salt domes, geologic domes, ventifacts, tuff rings, forest rings, and others. Conversely, an impact crater may originally be thought as one of these geological features, like Meteor Crater (as a maar) or Upheaval Dome (as a salt dome).
The presence of shock metamorphism and shatter cones are important criteria in favor of an impact interpretation, though massive landslides (such as the Köfels landslide of 7800 BC which was once thought to be impact-related) may produce shock-like fused rocks called "frictionite".[373]
↑Acevedo, R.; Rocca, M. C.; Ponce, J.; Stinco, S. (2015). Impact Craters in South America. SpringerBriefs in Earth Sciences. Springer. ISBN978-3-319-13092-7.
↑Crósta, Alvaro P.; Reimold, Wolf Uwe (2016). "Impact Craters in South America, by Acevedo R. D., Rocca M. C. L., Ponce J. F., and Stinco S. G. Heidelberg: Springer, 2015. 104 p. SpringerBriefs in Earth Sciences: South America and the Southern Hemisphere. ISBN 978-3-319-13092-7". Meteoritics & Planetary Science51 (5): 996–999. doi:10.1111/maps.12632.
↑Garvin, James B.; Blodget, Herbert W. (1986). "Suspected Impact Crater Near Al Madafi, Saudi Arabia". Meteoritics21: 366. Bibcode: 1986Metic..21..366G.
↑Zeilik, B. S. (1987). "The Arganaty cosmogenic crater in southern Kazakhstan and the ring structures associated with it". Akademiia Nauk SSSR, Doklady297 (4): 925–928. Bibcode: 1987DoSSR.297..925Z.
↑Becker, L.; Poreda, R. J.; Basu, A. R.; Pope, K. O.; Harrison, T. M.; Nicholson, C.; Iasky, R. (2004). "Bedout: A Possible End-Permian Impact Crater Offshore of Northwestern Australia". Science304 (5676): 1469–1476. doi:10.1126/science.1093925. PMID15143216. Bibcode: 2004Sci...304.1469B.
↑Papagiannis, Michael D. (1989). "Photographs from geostationary satellites indicate the possible existence of a huge 300 KM impact crater in the Bohemian region of Czechoslovakia". Meteoritics24: 313. Bibcode: 1989Metic..24R.313P.
↑Rajlich, P. (1992). "Bohemian Circular Structure, Czechoslovakia: Search for the Impact Evidence". Abstracts of Papers Presented to the International Conference on Large Meteorite Impacts and Planetary Evolution. Held August 31 – September 2, 1992, in Sudbury, Ontario, Canada. 790. Lunar and Planetary Institute. 57. LPI Contribution 790. Bibcode: 1992LPICo.790...57R.
↑King, D.T., Jr., and Petruny, L.W.. 2007. Impact structures and craters of the U.S. Gulf coastal states.Gulf Coast Association of Geological Societies Transactions. v. 57, p. 409-425.
↑Matherne, C., Karunatillake, S., Hood, D.R., Duxbury, J., Herr, A., Heinrich, P., Horn, M., Webb, A. and Sivils, A., 2020. Planar Deformation Features Found Within a Possible Impact Structure, the Brushy Creek Feature, St. Helena Parish, LA.Lunar and Planetary Science Conference No. 2326, p. 2361.
↑Quek, Long Xiang; Ghani, A. A; Badruldin, Muhammad Hafifi; Mokhtar, Saidin; Harith, Zuhar Zahir; Roselee, M. Hatta (2015). "Platinum Group Elements in Proximal Impactites of the Bukit Bunuh Impact Structure, Malaysia". Current Science109 (12). doi:10.18520/v109/i12/2303-2308.
↑ 67.067.1Abbott, Dallas H., Martos, Suzanne, Elkinton, Hannah, Bryant, Edward F., Gusiakov, Viacheslav, and Breger, Dee (2006). Impact craters as sources of megatsunami generated chevron dunes. 2006 Philadelphia Annual Meeting (22–25 October 2006)
↑Masse W. B., Bryant E., Gusiakov V., Abbott D., Rambolamanana G., Raza H., Courty M.A. (2006). Holocene Indian ocean cosmic impacts – the megatsunami chevron evidence from southern Madagascar. AGU, San Francisco
↑Legg, Mark R.; Nicholson, Craig; Goldfinger, Chris; Milstein, Randall; Kamerling, Marc (2004). "Large enigmatic crater structures offshore southern California". Geophys. J. Int.159 (2): 803–815. doi:10.1111/j.1365-246x.2004.02424.x. Bibcode: 2004GeoJI.159..803L.
↑Brandsma Dan, Lund Steve P.; Henyey Thomas, L. (1989). "Paleomagnetism of Late Quaternary marine sediments from Santa Catalina basin, California continental borderland .". J. Geophys. Res. B94 (1): 547–564. doi:10.1029/JB094iB01p00547. Bibcode: 1989JGR....94..547B.
↑Holcombe, Troy L.; Warren, John S.; Reid, David F.; Virden, William T.; Divins, David L. (2001). "Small Rimmed Depression in Lake Ontario: An Impact Crater?". Journal of Great Lakes Research27 (4): 510–517. doi:10.1016/S0380-1330(01)70664-8.
↑Holcombe, Troy L.; Youngblut, Scott; Slowey, Niall (2013). "Geological structure of Charity Shoal crater, Lake Ontario, revealed by multibeam bathymetry". Geo-Marine Letters33 (4): 245–252. doi:10.1007/s00367-013-0322-6. Bibcode: 2013GML....33..245H.
↑Suttak, P.A., 2013, High-resolution lake-based magnetic mapping and modeling of basement structures, with examples from Küçükçekmece Lagoon, Turkey and Charity Shoal, Lake Ontario. unpublished MS thesis, School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario. 113 pp.
↑Assis Fernandes V., Hopp J., Schwarz W.H., Fritz J.P., and Trieloff M. (2019) 40Ar-39Ar step heating of North American tektites and of impact melt rock samples from the Chesapeake Bay impact structure. Geochimica et Cosmochimica Acta 255, 289-308. https://doi.org/10.1016/j.gca.2019.03.004
↑Higgins, M.D., P. Lajeunesse, G. St-Onge, R. Sanfacon, and M. Duchesne, 2013, Impact Breccia Clast from the Corossol Crater, Canada. 76th Annual Meteoritical Society Meeting. Meteoritics and Planetary Science Supplement. id.5190.
↑Lajeunesse, Patrick; St-Onge, Guillaume; Locat, Jacques; Duchesne, Mathieu J.; Higgins, Michael D.; Sanfaçon, Richard; Ortiz, Joseph (2013). "The Corossol structure: A possible impact crater on the seafloor of the northwestern Gulf of St. Lawrence, Eastern Canada". Meteoritics & Planetary Science48 (12): 2542–2558. doi:10.1111/maps.12224. Bibcode: 2013M&PS...48.2542L.
↑Lajeunesse, P., Duchesne, M.J., St-Onge, G., Locat, J., Higgins, M., Sanfaçon, R. and Ortiz, J., 2016. The Corossol Structure: a glaciated crater of possible impact origin in the northwestern Gulf of St Lawrence, eastern Canada. In Dowdeswell, J. A., Canals, M., Jakobsson, M., Todd, B. J., Dowdeswell, E. K. & Hogan, K. A. (eds) 2016. Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient. Geological Society, London, Memoirs, 46(1), pp.127–128.
↑Shuvalov V.V. (2006). Numerical modeling of the Eltanin impact: determination of projectile size and tsunami amplitude. 40 ESLAB Symposium: 1 International Conference on Impact Cratering in the Solar System, Noordwijk, 8–12 May 2006, Noordwijk: ESA, pp. 201-202
↑Weiss, Robert; Lynett, Patrick; Wünnemann, Kai (2015). "The Eltanin impact and its tsunami along the coast of South America: Insights for potential deposits". Earth and Planetary Science Letters409: 175–181. doi:10.1016/j.epsl.2014.10.050. Bibcode: 2015E&PSL.409..175W.
↑Rocca, Maximiliano C. L.; Rampino, Michael R.; Presser, Jaime Leonardo Báez (2017). "Geophysical evidence for a large impact structure on the Falkland Plateau". Terra Nova29 (4): 233–37. doi:10.1111/ter.12269. Bibcode: 2017TeNov..29..233R.
↑Reimold, W.U.; Crósta, A.P.; Koeberl, C.; Hauser, N. (2017). "Comment on "Geophysical evidence for a large impact structure on the Falkland (Malvinas) Plateau"". Terra Nova29 (6): 409–410. doi:10.1111/ter.12284. Bibcode: 2017TeNov..29..233R.
↑Iasky, R. P.; Glikson, A. Y. (2005). "Gnargoo: A possible 75 km-diameter post-Early Permian – pre-Cretaceous buried impact structure, Carnarvon Basin, Western Australia". Australian Journal of Earth Sciences52 (4–5): 575–586. doi:10.1080/08120090500170377. Bibcode: 2005AuJES..52..575I.
↑Monteiro, J. F. (1991). "The Guarda Circular Structure: A Possible Complex Impact Crater". Abstracts of the Lunar and Planetary Science Conference22: 915–916. Bibcode: 1991LPI....22..915M.
↑Van Zalinge, M. E. (2012). The Guarda structure, NE-Portugal: a meteorite impact crater or not? (Thesis). Utrecht University, Utrecht. p. 83.
↑Van Zalinge, M. E.; Hamers, M. F.; Drury, M. R. (2012). "The Guarda structure (Portugal): impact structure or not? Microstructural studies of quartz, zircon and monazite". Meteoritics and Planetary Science Supplement75: 5045–5046.
↑Wiberg Leanne (1982). The Hico Structure: a possible impact structure in north-central Texas, USA. Lunar and Planet. Sci. 13: Abstr. Pap. 13th Lunar and Planet. Sci. Conf., Houston, Tex., March 15–19, Pt 2., Houston, Tex., pp. 863–864
↑Losiak, A.; Jõeleht, A.; Plado, J.; Szyszka, M.; Kirsimäe, K.; Wild, E. M.; Steier, P.; Belcher, C. M. et al. (February 2020). "Determining the age and possibility for an extraterrestrial impact formation mechanism of the Ilumetsa structures (Estonia)" (in en). Meteoritics & Planetary Science55 (2): 274–293. doi:10.1111/maps.13431. ISSN1086-9379. Bibcode: 2020M&PS...55..274L.
↑ 139.0139.1Frank Dachille (1976). (1976). "Frequency of the formation of large terrestrial impact craters". Meteoritics11: 270. Bibcode: 1976Metic..11..270D.
↑ 140.0140.1Zeylik B. S.; Seytmuratova E. Yu, 1974: A meteorite-impact structure in central Kazakhstan and its magmatic-ore controlling role. Doklady Akademii Nauk SSSR: 1, pp. 167–170
↑Schmieder, Martin; Buchner, Elmar; Le Heron, Daniel Paul (2009). "The Jebel Hadid structure (Al Kufrah Basin, SE Libya) – A possible impact structure and potential hydrocarbon trap?". Marine and Petroleum Geology26 (3): 310–318. doi:10.1016/j.marpetgeo.2008.04.003.
↑Talwani, Pradeep; Wildermuth, Eric; Parkinson, Chris D. (2003). "An impact crater in northeast South Carolina inferred from potential field data". Geophysical Research Letters30 (7): 1366. doi:10.1029/2003GL017051. Bibcode: 2003GeoRL..30.1366T.
↑Robertson P.B., Butler M.D. (1982). New evidence for the impact origin of Kilmichael Mississippi. Lunar and Planet. Sci. 13: Abstr. Pap. 13th Lunar and Planet. Sci. Conf., Houston, Tex., March 15–19, 1982. Pt 2, Houston, Tex., pp. 653–654
↑Wang, K.; Geldsetzer, H. H. J. (1992). "A late Devonian impact event and its association with a possible extinction event on Eastern Gondwana". Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution: 77. Bibcode: 1992lmip.conf...77W.
↑Abbott, D.H., A. Matzen, E.A. Bryant, and S.F. Pekar (2003). Did a bolide impact cause catastrophic tsunamis in Australia and New Zealand?. Geological Society of America Abstracts with Programs, 35:168
↑Garde, Adam A.; McDonald, Iain; Dyck, Brendan; Keulen, Nynke (2012). "Searching for giant, ancient impact structures on Earth: The Mesoarchaean Maniitsoq structure, West Greenland". Earth and Planetary Science Letters337–338: 197–210. doi:10.1016/j.epsl.2012.04.026. Bibcode: 2012E&PSL.337..197G.
↑Scherst, Anders; Garde, Adam A. (30 July 2013). "Complete hydrothermal re-equilibration of zircon in the Maniitsoq structure, West Greenland: A 3001 Ma minimum age of impact?". Meteoritics & Planetary Science48 (8): 1472–1498. doi:10.1111/maps.12169. Bibcode: 2013M&PS...48.1472S.
↑Glikson, A.; Jablonski, D.; Westlake, S. (2010). "Origin of the Mt Ashmore structural dome, west Bonaparte Basin, Timor Sea". Australian Journal of Earth Sciences57 (4): 411–430. doi:10.1080/08120099.2010.481327. Bibcode: 2010AuJES..57..411G.
↑Dietz R.S., McHone J.F. (1990). Chesterfield structure (Hudson Bay): possible astrobleme. Lunar and Planet. Sci.: Abstr. Pap. 21st Lunar and Planet. Sci. Conf., March 12–16. Vol. 21, Houston (Tex.), p. 286
↑Brookfield Michael (2006). The great arc of eastern Hudson Bay, Canada: part of a multi-ringed impact basin. 40 ESLAB Symposium: 1 International Conference on Impact Cratering in the Solar System, Noordwijk, 8–12 May 2006, Noordwijk: ESA, p. 35
↑Isachsen, Y.W. (1988). "Metallic spherules and a microtektite support the interpretation of a buried impact crater beneath Panther Mountain in the central Catskill Mountains, New York". Meteoritics & Planetary Science33 (4): 74. Bibcode: 1998M&PSA..33R..74I.
↑Isachsen Y.W., Wright S.F., Revetta F.A., Dineen R.J. (1992). The Panther mountain circular structure, a possible buried meteorite crater. Pap. Present. Int. Conf. Large Meteorite Impacts and Planet. Evol., Sudbury, Aug. 31 – Sept. 2, 1992, Houston (Tex.), p. 40
↑Hachiro J. (2000). Four impact cratering on the Parana sedimentary Basin (South America). The 31st International Geological Congress, Rio de Janeiro, Aug. 6–17, 2000. Rio de Janeiro: Geol. Surv. Braz., p. 6424
↑Nayak V.K. (1997). The circular structure at Ramgarh, India: an astrobleme(?). LPI Contrib., No. 922, p. 31
↑Master, S.; Pandit, M.K. (1999). "New evidence for an impact origin of the Ramgarh structure, Rajasthan, India .". Meteoritics & Planetary Science34 (4): 79. Bibcode: 1999M&PSA..34R..79M.
↑Bohor B.F., Foord E.E., Modreski P.J. (1985). Extraterrestrially-derived magnesioferrite at the K-T boundary, Caravaca, Spain. Lunar and Planet. Sci. Vol. 16: Abstr. Pap. 16th Conf., March 11–15, 1985. Pt 1, Houston, Tex., pp. 77–78
↑Langenhorst, F.; Deutsch, A. (1996). "The Azuara and Rubielos Structures, Spain: Twin Impact Craters or Alpine Thrust Systems? TEM Investigations on Deformed Quartz Disprove Shock Origin". Lunar and Planetary Science Conference27: 725. Bibcode: 1996LPI....27..725L.
↑Bostwick Jennifer A., Kyte Frank T. (1993). Impact mineralogy and chemistry of the cretaceous-tertiary boundary at DSDP site 576. Lunar and Planet. Sci. Vol. 24. Abstr. Pap. 24th Lunar and Planet. Sci. Conf., March 15–19, 1993. Pt 1., Houston (Tex.), p. 157
↑Kyte, Frank T.; Bostwick, Jennifer A. (1995). "Magnesioferrite spinel in Cretaceous/Tertiary boundary sediments of the Pacific basin: Remnants of hot, early ejecta from the Chicxulub impact?". Earth and Planetary Science Letters132 (1–4): 113–127. doi:10.1016/0012-821X(95)00051-D. Bibcode: 1995E&PSL.132..113K.
↑Kyte Frank T. (1996). A piece of the KT bolide?. Lunar and Planet. Sci. Vol. 27. Abstr. Pap. 27th Lunar and Planet. Sci. Conf., March 18–22, 1996. Pt 2, Houston (Tex.), p. 717
↑Castelo Branco R.M.G. (2000). Some evidences on northeast Brazilian impact structures (astroblemes). The 31st International Geological Congress, Rio de Janeiro, Aug. 6–17, 2000, Rio de Janeiro: Geol. Surv. Braz., p. 4479
↑Dietz, R. S.; McHone, J. F. (1991). "Astroblemes Recently Confirmed with Shatter Cones". 54th Annual Meeting of the Meteoritical Society54: 56. Bibcode: 1991LPICo.766...56D.
↑Wu, S. (1988). "The Shanghewan Impact Crater, China". Lunar and Planetary Science Conference19: 1296. Bibcode: 1988LPI....19.1296W.
↑Collins G.S., Turtle E.P., Melosh H.J. (2003). Numerical simulations of silverpit crater collapse: a comparison of Tekton and SALES . LPI Contrib., No. 1155, p. 18
↑Stratford R. (2004). Bombarded Britain: A Search for British Impact Structures // Imperial College Press, London
↑Collins G., Pain C. C., Wilson C. (2006) MODELLING IMPACT CRATER COLLAPSE IN THREE DIMENSIONS
↑Conway Z.K., Haszeldine S., Rider M. (2006). Determining the origin of the Silverpit crater, UK southern North Sea: can you prove the existence of a meteorite crater without geochemical or mineralogical data?. 40 ESLAB Symposium: 1 International Conference on Impact Cratering in the Solar System, Noordwijk, 8–12 May 2006, Noordwijk: ESA, P. 53
↑Cartwright J., Davies R., Stewart S., Wall M. (2006) BURIAL OF THE SILVERPIT METEORITE CRATER
↑Miura, Y.; Okamoto, M.; Fukuchi, T.; Sato, H.; Kono, Y.; Furumoto, M. (1995). "Takamatsu Crater Structure: Preliminary Report of Impact Crater in Active Orogenic Region". Lunar and Planetary Science Conference26: 987. Bibcode: 1995LPI....26..987M.
↑Miura Y. (2002). Shocked quartz materials found in Japan. 18 General Meeting of the International Mineralogical Association "Mineralogy for the New Millennium", Edingurgh, 1–6 Sept., 2002, Edinburgh: IMA, p.105
↑Miura Y., Hirota A. (2002). Impact-related glasses in Japan. Bull. liaison Soc. fr. mineral. et cristallogr., Vol. 14, No. 1, pp. 18–19
↑Khosbayar P., Ariunbileg Kh. (2000). Impact structure in Mongolia . The 31st International Geological Congress, Rio de Janeiro, Aug. 6–17, 2000, Rio de Janeiro: Geol. Surv. Braz, p. 6429
↑Glass B.P. (1987). Coesite associated with North American tektite debris in DSDP site 612 on the continental slope off NEW Jersey . Lunar and Planet. Sci. Houston (Tex.), s.a.. Vol. 18: 18th Conf., Houston Tex., March 16–20, 1987: Abstr. Pap., pp. 328–329
↑Poag, C.Wylie; Poppe, Lawrence J. (1998). "The Toms Canyon structure, New Jersey outer continental shelf: A possible late Eocene impact crater". Marine Geology145 (1–2): 23–60. doi:10.1016/S0025-3227(97)00113-8. Bibcode: 1998MGeol.145...23P.
↑ 306.0306.1Glikson, A.Y.; Meixner, A.J.; Radke, B.; Uysal, I.T.; Saygin, E.; Vickers, J.; Mernagh, T.P. (2015). "Geophysical anomalies and quartz deformation of the Warburton West structure, central Australia". Tectonophysics643: 55–72. doi:10.1016/j.tecto.2014.12.010.
↑ 307.0307.1Glikson, A.Y. and Pirajno, F., 2018. The World’s Largest Late to Post-Archaean Asteroid Impact Structures. In Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia (pp. 61-78). Springer, Cham.,
↑Glikson, Andrew (2018). "Structure and origin of Australian ring and dome features with reference to the search for asteroid impact events". Tectonophysics722: 175–196. doi:10.1016/j.tecto.2017.11.003. Bibcode: 2018Tectp.722..175G.
↑Dulin S. and Elmore R. D. 2008. Paleomagnetism of the Weaubleau structure, southwestern Missouri. In The sedimentary record of meteorite impacts. (pp. 55-64). Geological Society of America Special Paper No. 437.
↑Dodson, J.R.; Ramrath, A. (2001). "An Upper Pliocene lacustrine environmental record from south-Western Australia — preliminary results". Palaeogeography, Palaeoclimatology, Palaeoecology167 (3–4): 309–320. doi:10.1016/S0031-0182(00)00244-3. Bibcode: 2001PPP...167..309D.
↑Dodson, J.; MacPhail, M. K. (2004). "Palynological evidence for aridity events and vegetation change during the Middle Pliocene, a warm period in Southwestern Australia". Global and Planetary Change41 (3–4): 285–307. doi:10.1016/j.gloplacha.2004.01.013. Bibcode: 2004GPC....41..285D.
↑Master, S. (2002) Umm al Binni lake, a possible Holocene impact structure in the marshes of southern Iraq. In: Leroy, S. and Stewart, I.S. (Eds.), Environmental Catastrophes and Recovery in the Holocene, Abstracts Volume, Brunel University, UK, 29 August – 2 September 2002, pp. 56–57
↑Boslough, Mark (March 2019). "Crater Discovery Story Flawed by Premature Link to Speculative Impact Hypothesis". Skeptical Inquirer43 (2): 6–7.
↑Holliday, Vance T.; Daulton, Tyrone L.; Bartlein, Patrick J.; Boslough, Mark B.; Breslawski, Ryan P.; Fisher, Abigail E.; Jorgeson, Ian A.; Scott, Andrew C. et al. (2023-07-26). "Comprehensive refutation of the Younger Dryas Impact Hypothesis (YDIH)" (in en). Earth-Science Reviews247: 104502. doi:10.1016/j.earscirev.2023.104502.
↑ 342.0342.1Glass, B. P.; Pizzuto, J. E. (1994). "Geographic variation in Australasian microtektite concentrations: Implications concerning the location and size of the source crater". Journal of Geophysical Research99 (E9): 19075. doi:10.1029/94JE01866. Bibcode: 1994JGR....9919075G.
↑Becker L., Shukolyukov A., Macassic C., Lugmair G. & Poreda R. 2006. Extraterrestrial Chromium at the Graphite Peak P/Tr boundary and in the Bedout Impact Melt Breccia. Lunar and Planetary Science XXXVII (2006), abstract # 2321.PDF
↑Schultz, P. H.; Harris, R. S.; Perroud, S.; Blanco, N.; Tomlinson, S. (2022). "Widespread glasses generated by cometary fireballs during the late Pleistocene in the Atacama Desert, Chile". Geology50 (2): 205. doi:10.1130/G49426.1. Bibcode: 2022Geo....50..205S.
↑Cavosie, A.J.; Koeberl, C. (2019). "Overestimation of threat from 100 Mt–class airbursts? High-pressure evidence from zircon in Libyan Desert Glass". Geology47 (7): 609–612. doi:10.1130/G45974.1. Bibcode: 2019Geo....47..609C.
↑Koeberl, C.; Ferrière, L. (2019). "Libyan Desert Glass area in western Egypt: Shocked quartz in bedrock points to a possible deeply eroded impact structure in the region". Meteoritics & Planetary Science54 (10): 2398–2408. doi:10.1111/maps.13250. Bibcode: 2019M&PS...54.2398K.
↑Sighinolfi, G.P.; Lugli, F.; Piccione, F.; Michele, V.D.; Cipriani, A. (2020). "Terrestrial target and melting site of Libyan Desert Glass: New evidence from trace elements and Sr isotopes". Meteoritics & Planetary Science55 (8): 1865–1883. doi:10.1111/maps.13550. Bibcode: 2020M&PS...55.1865S.
↑Sestov, V.; Shuvalov, V.; Kosarev, I. (2020). "Formation of Libyan Desert Glass: Numerical simulations of melting of silica due to radiation from near-surface airbursts". Meteoritics & Planetary Science55 (4): 895–910. doi:10.1111/maps.13470. Bibcode: 2020M&PS...55..895S.
↑Haldemann, A. F. C.; Kleindienst, M. R.; Churcher, C. S.; Smith, J. R.; Schwarcz, H. P.; Markham, K.; Osinski, G. (August 2005). "Mapping Impact Modified Sediments: Subtle Remote-Sensing Signatures of the Dakhleh Oasis Catastrophic Event, Western Desert, Egypt". Bulletin of the American Astronomical Society37: 648. Bibcode: 2005DPS....37.1703H.
↑Schwarz, W.H.; Trieloff, M.; Bollinger, K.; Gantert, N.; Fernandes, V.A.; Meyer, H.P.; Povenmire, H.; Jessberger, E.K. et al. (2016). "Coeval ages of Australasian, Central American and Western Canadian tektites reveal multiple impacts 790 ka ago". Geochimica et Cosmochimica Acta178: 307–319. doi:10.1016/j.gca.2015.12.037. Bibcode: 2016GeCoA.178..307S.
↑Koeberl, C.; Glass, B.P.; Schulz, T.; Wegner, W.; Giuli, G.; Cicconi, M.R.; Trapananti, A.; Stabile, P. et al. (2022). "Tektite glasses from Belize, Central America: Petrography, geochemistry, and search for a possible meteoritic component". Geochimica et Cosmochimica Acta325: 232–257. doi:10.1016/j.gca.2022.02.021. Bibcode: 2022GeCoA.325..232K.
↑Drake, Simon M.; Beard, Andrew D.; Jones, Adrian P.; Brown, David J.; Fortes, A. Dominic; Millar, Ian L.; Carter, Andrew; Baca, Jergus et al. (2017). "Discovery of a meteoritic ejecta layer containing unmelted impactor fragments at the base of Paleocene lavas, Isle of Skye, Scotland". Geology46 (2): 171. doi:10.1130/g39452.1. Bibcode: 2018Geo....46..171D.
↑Osinski, G.R.; Ferrière, L.; Hill, P.J.A.; Pave, A.R.; Preston, L.J.; Singleton, A.; Pickersgill, A.E. (2014). "The Mesoproterozoic Stac Fada Member, NW Scotland: an impact origin confirmed but refined". Journal of the Geological Society178 (9): no. jgs2020-056.
↑Sleep, N.H.; Lowe, D.R. (2004). "Physics of crustal fracturing and chert dike formation triggered by asteroid impact, ~3.26 Ga, Barberton greenstone belt, South Africa". Geochemistry, Geophysics, Geosystems159 (4): 1045–1070.
↑Lowe, D.R.; Byerly, G.R.; Kyte, F.T. (2014). "Recently discovered 3.42–3.23 Ga impact layers, Barberton Belt, South Africa: 3.8 Ga detrital zircons, Archean impact history, and tectonic implications". Geology42 (9): 747–750. doi:10.1130/G35743.1. Bibcode: 2014Geo....42..747L.
↑Glikson, A.; Hickman, A.; Evans, N.J.; Kirkland, C.L.; Park, J.W.; Rapp, RS.; Romanon, S. (2016). "A new ~3.46 Ga asteroid impact ejecta unit at Marble Bar, Pilbara Craton, Western Australia: A petrological, microprobe and laser ablation ICPMS study". Precambrian Research279: 103–122. doi:10.1016/j.precamres.2016.04.003. Bibcode: 2016PreR..279..103G.
↑Weidinger JT, Korup O (2008). "Frictionite as evidence for a large Late Quaternary rockslide near Kanchenjunga, Sikkim Himalayas, India – Implications for extreme events in mountain relief destruction". Geomorphology103 (1): 57–65. doi:10.1016/j.geomorph.2007.10.021. Bibcode: 2009Geomo.103...57W.