List of possible impact structures on Earth

From HandWiki - Reading time: 39 min

Short description: None

According to the Planetary and Space Science Centre (PASSC) at the University of New Brunswick in Canada, there are 190 confirmed impact structures on Earth. Each is recorded in a database called the Earth Impact Database (EID).[1]

Map all coordinates using: OpenStreetMap 
Download coordinates as: KML · GPX

List of confirmed and possible impact structures

The following tables list geological features on Earth that are known impact events as well as possible, but for which there is currently no confirming scientific evidence in the peer-reviewed literature, impact events. In order for a structure to be confirmed as an impact crater, it must meet a stringent set of well-established criteria. Some proposed impact structures are likely to eventually be confirmed, whereas others are likely to be shown to have been misidentified (see below). Recent extensive surveys have been done for Australian (2005),[2] African (2014),[3] and South American (2015)[4] craters, as well as those in the Arab world (2016).[5] A book review by A. Crósta and U. Reimold disputes some of the evidence presented for several of the South American structures.[6]

Name Location Country Diameter (km) Age (Ma) Confirmed Notes Image Coordinates
38th Parallel structures Missouri, etc. United States 9.5 2-17


320 320 ± 10


[7]
38th parallel structures loc.svg
[ ⚑ ] 37°30′N 88°18′W / 37.5°N 88.3°W / 37.5; -88.3 (Hicks Dome)
[ ⚑ ] 37°48′N 90°12′W / 37.8°N 90.2°W / 37.8; -90.2 (Avon crater)
[ ⚑ ] 37°48′N 91°24′W / 37.8°N 91.4°W / 37.8; -91.4 (Crooked Creek crater)
[ ⚑ ] 37°54′N 92°42′W / 37.9°N 92.7°W / 37.9; -92.7 (Decaturville crater)
[ ⚑ ] 37°42′N 92°24′W / 37.7°N 92.4°W / 37.7; -92.4 (Hazelgreen crater)
[ ⚑ ] 38°00′N 93°36′W / 38.0°N 93.6°W / 38.0; -93.6 (Weaubleau-Osceola structure)
[ ⚑ ] 37°42′N 95°42′W / 37.7°N 95.7°W / 37.7; -95.7 (Rose Dome)
Acraman South Austrialia Australia 90 590 Yes [8] [ ⚑ ] 32°1′S 135°27′E / 32.017°S 135.45°E / -32.017; 135.45
Ak-Bura (Murgab) Tajikistan Tajikistan 0.080 0.0003 0.0003
(1700 AD)


[9][10][11][12] [ ⚑ ] 38°5′38.5″N 74°16′58″E / 38.094028°N 74.28278°E / 38.094028; 74.28278 (Ak-Bura)
Al Madafi Saudi Arabia Saudi Arabia 6 36 6-66


[13][14][15] [ ⚑ ] 28°40′N 37°11′E / 28.67°N 37.18°E / 28.67; 37.18 (Al Madafi)
Alamo bolide impact Nevada United States 100 100 ± 40


367 [16][17] [note 1] [ ⚑ ] 37°19′N 116°11′W / 37.31°N 116.18°W / 37.31; -116.18 (Alamo)
Amelia Creek Northern Territory Australia 20 600-1660 Yes 20°55′S 134°50′E
Ames Oklahoma United States 470 ± 30 Yes 36° 17′ 4″ N, 98° 11′ 38″ W
Amguid Algeria 1 <1


Yes
CratereAmguid.jpg
26° 5′ 16″ N, 4° 23′ 43″ E
Anéfis Mali Mali 3.9 23 23?


[20][9][21][22] [ ⚑ ] 18°04′19″N 0°02′53″W / 18.072°N 0.048°W / 18.072; -0.048 (Anefis)
Aorounga Central Chad Chad 11.6 345 <345


Yes [23][24][25]
Aorounga Impact Crater, Chad.jpg
[ ⚑ ] 19°13′44″N 19°15′40″E / 19.229°N 19.261°E / 19.229; 19.261 (Aorounga center)
Aouelloul Mauritania Mauritania 0.39 3.0 ± 0.3 Yes
Araguainha Central Brazil Brazil 40 244.4 Yes 16°47′S 52°59′W
Arganaty Almaty region Kazakhstan 300 250 [26][27][28][note 1] [ ⚑ ] 46°30′N 79°48′E / 46.5°N 79.8°E / 46.5; 79.8 (Arganaty)
Arlit Niger Niger 10 ? [29][30][31] [ ⚑ ] 21°21′11″N 9°08′42″E / 21.353°N 9.145°E / 21.353; 9.145 (Arlit)
Avak Alaska United States 12 3-95 Yes [32]
Azuara Spain Spain 37.5 35-40


35 30-40


[33]
Azuara-impact-structure-Map.jpg
[ ⚑ ] 41°07′N 0°13′W / 41.117°N 0.217°W / 41.117; -0.217 (Azuara)
Bajada del Diablo Argentina Argentina 40 0.45 0.45 ± 0.3


[34][35][36] [ ⚑ ] 42°46′S 67°24′W / 42.767°S 67.4°W / -42.767; -67.4 (Bajada del Diablo)
Bajo Hondo Argentina Argentina 3.9 9 <10


[37][38] [ ⚑ ] 42°15′S 67°55′W / 42.25°S 67.917°W / -42.25; -67.917 (Bajo Hondo)
Bangui magnetic anomaly Central African Republic Central African Republic 700 600-800?


543 >542


[39][3][40]
Bangui anomaly.JPG
[ ⚑ ] 6°00′N 18°18′E / 6°N 18.3°E / 6; 18.3 (Bangui)
Barringer Meteorite Arizona United States 1.18 0.049 ± 0.003 Yes [41]
Bateke Plateau Gabon Gabon 7.1 2.6 <2.6


[42][43] [ ⚑ ] 0°38′45″S 14°27′29″E / 0.64583°S 14.45806°E / -0.64583; 14.45806 (Bateke)
Beaverhead Montana United States 60 600 Yes 44°15′N 114°0′W
Bedout Australia (offshore) Australia 250 250 [44][45][2] [ ⚑ ] 18°S 119°E / 18°S 119°E / -18; 119 (Bedout)
Beyenchime-Salaatin Russia Russia 8 40 ± 20 Yes
Bee Bluff Texas United States 2.4 40 40?


[46][47][48][note 1] [ ⚑ ] 29°02′N 99°51′W / 29.03°N 99.85°W / 29.03; -99.85 (Bee Bluff)
Bigach Kazakhstan Kazakhstan 8 5 ± 3 Yes
Björkö Björkö, Ekerö Sweden 10 1200 [49][50] [ ⚑ ] 59°18′N 17°36′E / 59.30°N 17.60°E / 59.30; 17.60 (Björkö)
Bloody Creek Nova Scotia Canada 40 ? [51] [ ⚑ ] 44°45′N 65°14′W / 44.75°N 65.233°W / 44.75; -65.233 (Bloody Creek)
Bohemian Czech Republic Czech Republic 280 260-300


700 >700?


[52][9][53][54] [ ⚑ ] 50°00′N 14°42′E / 50.0°N 14.7°E / 50.0; 14.7 (Bohemian)
Boltysh Kirovohrad Oblast Ukraine 24 65.17 Yes 48°54′N 32°15′E
Bow City Alberta Canada 8 70 [55] [ ⚑ ] 50°25′N 112°16′W / 50.417°N 112.267°W / 50.417; -112.267 (Bow City)
Bowers Antarctic Ocean (Ross Sea) 100 4 3-5


[56][57][58][59] [ ⚑ ] 71°12′S 176°00′E / 71.2°S 176°E / -71.2; 176 (Bowers)
Brushy Creek Feature Louisiana United States 2.0 0.0205 0.011–0.030


[60][61][62][63] [ ⚑ ] 30°46′N 90°44′W / 30.76°N 90.73°W / 30.76; -90.73 (Brushy Creek Feature)
Bukit Bunuh Perak Malaysia 5–6 1.34–1.84 [64][65] [ ⚑ ] 5°04′30″N 100°58′30″E / 5.075°N 100.975°E / 5.075; 100.975 (Bukit Bunuh)
Burckle Indian Ocean 30 30?


0.005 3000 BC


[66][67][68] [ ⚑ ] 30°52′S 61°22′E / 30.86°S 61.36°E / -30.86; 61.36 (Burckle)
Carswell Saskatchewan Canada 39 115 Yes 58°27′N 109°30′W
Catalina structures
(Navy, Catalina, Emery Knoll)
Pacific Ocean (NE) 32 12, 32, 37


17 16-18


[69][70][71] [ ⚑ ] 32°55′N 118°05′W / 32.91°N 118.09°W / 32.91; -118.09 (Catalina)
Cerro do Jarau Paraná Brazil 10 117 [72][73][74] [ ⚑ ] 30°12′S 56°32′W / 30.2°S 56.533°W / -30.2; -56.533 (Cerro)
Charity Shoal Ontario Canada 1.2 469 <470


[75][76][77][78]
NOAA map of Charity Shoal in Lake Ontario.jpg
[ ⚑ ] 44°2′15″N 76°29′37″W / 44.0375°N 76.49361°W / 44.0375; -76.49361 (Charity Shoal)
Charlevoix Quebec Canada 54 342 Yes 47°32′N 70°18′W
Chesapeake Bay Virginia United States 40 34.86 ± 0.23 Yes [79] 37°17′N 76°1′W
Clearwater East Quebec Canada 26 460-470 Yes [80]
Clearwater West Quebec Canada 36 290 Yes 56°13′N 74°30′W
Chicxulub Yucatan Mexico 150 66.051 ± 0.031 Yes 21°20′N 89°30′W
Corossol Quebec Canada 4 469 <470


[81][82][83][84] [ ⚑ ] 50°03′N 66°23′W / 50.05°N 66.383°W / 50.05; -66.383 (Corossol)
Darwin Crater Tasmania Australia 1.2 0.816 [85][note 1]
Darwin Crater Landsat.jpg
[ ⚑ ] 42°19′S 145°40′E / 42.317°S 145.667°E / -42.317; 145.667 (Darwin crater)
Decorah Iowa United States 5.6 470 [86][87][88]
USGS Decorah crater.jpg
[ ⚑ ] 43°18′50″N 91°46′20″W / 43.31389°N 91.77222°W / 43.31389; -91.77222 (Decorah)
Deniliquin New South Wales Australia 520 400-500 No [ ⚑ ] 35°32′0″S 144°58′0″E / 35.533333°S 144.966667°E / -35.533333; 144.966667 (Deniliquin)
Dhala Madhya Pradesh India 11 1700-2100 Yes 25°18′N 78°8′E
Diamantina River ring feature Queensland Australia 120 300 [89][90]
UpperDiamantinaCrustalAnomaly.png
[ ⚑ ] 22°09′S 141°54′E / 22.15°S 141.9°E / -22.15; 141.9 (Winton crustal anomaly)
Dumas magnetic anomaly Saskatchewan Canada 3.2 70 70 ± 5


[91][92] [ ⚑ ] 49°55′N 102°07′W / 49.92°N 102.12°W / 49.92; -102.12 (Dumas)
Duolun Inner Mongolia China 120 120 ± 50


129 129 ± 3


[93][94] [ ⚑ ] 42°3′N 116°15′E / 42.05°N 116.25°E / 42.05; 116.25 (Duolun)
El-Baz Egypt Egypt 4 ? [ ⚑ ] 24°12′N 26°24′E / 24.2°N 26.4°E / 24.2; 26.4 (El-Baz)
Eltanin Pacific Ocean (SE) 35 35?


2.5 [95][96][97][note 1] [ ⚑ ] 57°47′S 90°47′W / 57.783°S 90.783°W / -57.783; -90.783 (Eltanin)
Faya Basin Chad Chad 2 385 385 ± 15


[98][99] [ ⚑ ] 18°10′N 19°34′E / 18.167°N 19.567°E / 18.167; 19.567 (Faya)
Falkland Plateau anomaly Atlantic Ocean
(near Falkland Islands)
275 250-300


250 [100][101][102][103][104] [ ⚑ ] 51°S 62°W / 51°S 62°W / -51; -62 (Malvinas)
Fried Egg structure Atlantic Ocean (near Azores) 6 17 [105][106] [ ⚑ ] 36°N 27°W / 36°N 27°W / 36; -27 (Fried Egg)
Garet El Lefet Libya Libya 3 ? [107][108][109] [ ⚑ ] 25°00′N 16°30′E / 25.0°N 16.5°E / 25.0; 16.5 ("Garet El Lefet")
Gatun Panama Panama 3 20 [110][111][112] [ ⚑ ] 09°05′58″N 79°47′22″W / 9.09944°N 79.78944°W / 9.09944; -79.78944 (Gatun structure)
General San Martín Argentina Argentina 11 1.2 [113][114][115] [ ⚑ ] 38°0′S 63°18′W / 38°S 63.3°W / -38; -63.3 (General San Martin)
Gnargoo Western Australia Australia 75 299 <300


[116][117] [ ⚑ ] 24°48′24″S 115°13′29″E / 24.80667°S 115.22472°E / -24.80667; 115.22472 (Gnargoo)
Gosses Bluff Northern Territory Australia 22 142.5 Yes 23°49′S 132°18′E
Guarda Portugal Portugal 30 200 [118][119][120] [ ⚑ ] 40°38′N 07°06′W / 40.633°N 7.1°W / 40.633; -7.1 (Guarda)
Hartney anomaly Manitoba Canada 8 120 120 ± 20


[121][92][122] [ ⚑ ] 49°24′N 100°40′W / 49.4°N 100.67°W / 49.4; -100.67 (Hartney)
Haughton Nunavut Canada 23 39 Yes 75°23′N 89°40′W
Hiawatha Greenland Greenland 31 57.99 57.99 ± 0.54


[123][124][125] File:Hiawatha v45 scene1 4k 5mtopo.1760.tif [ ⚑ ] 78°44′N 66°14′W / 78.733°N 66.233°W / 78.733; -66.233 (Hiawatha)
Hico Texas United States 9 59 <60


[126][127][128] [ ⚑ ] 32°01′N 98°02′W / 32.01°N 98.03°W / 32.01; -98.03 (Hico)
Hotchkiss Alberta Canada 4 220 220 ± 100


[129][130] [ ⚑ ] 57°32′20″N 118°52′41″W / 57.539°N 118.878°W / 57.539; -118.878 (Hotchkiss)
Howell Tennessee United States 2.5 380 380 ± 10


[131][132][133] [ ⚑ ] 35°14′N 86°37′W / 35.23°N 86.61°W / 35.23; -86.61 (Howell)
Ibn-Batutah Libya Libya 2.5 120 120 ± 20


[134][135] [ ⚑ ] 21°34′10″N 20°50′15″E / 21.56944°N 20.8375°E / 21.56944; 20.8375 (Ibn-Batutah)
Ilumetsa Põlva County Estonia 0.08 0.0066 0.0066
(<4600 BC)


[136][137] Ilumetsa crater, Estonia.jpg [ ⚑ ] 57°57′N 27°24′E / 57.95°N 27.4°E / 57.95; 27.4
Ishim Akmola region Kazakhstan 300 445 430-460


[138][139][140][note 1] [ ⚑ ] 52°0′N 69°0′E / 52°N 69°E / 52; 69 (Ishim Akmola)
Iturralde Bolivia Bolivia 8.0 0.0205 0.011–0.030


[141]
Iturralde Crater PIA03359 cropped.jpg
[ ⚑ ] 12°35′S 67°40′W / 12.583°S 67.667°W / -12.583; -67.667 (Iturralde)
Jackpine Creek magnetic anomaly British Columbia Canada 25 120 120 ± 20


[142][143] [ ⚑ ] 55°36′N 120°06′W / 55.6°N 120.1°W / 55.6; -120.1 (Jackpine)
Jalapasquillo Puebla Mexico 1.2 10 <10


[144][145] [ ⚑ ] 19°13′23″N 97°25′44″W / 19.2231°N 97.429°W / 19.2231; -97.429 (Jalapasquillo)
Jebel Hadid Libya Libya 4.7 66 <66


[146][147] [ ⚑ ] 20°52′12″N 22°42′18″E / 20.87°N 22.705°E / 20.87; 22.705 (Jebel Hadid)
Jeptha Knob Kentucky United States 4.3 425 [148][note 1] [ ⚑ ] 38°11′N 85°07′W / 38.183°N 85.117°W / 38.183; -85.117 (Jeptha Knob)
Johnsonville South Carolina United States 11 300 300?


[149][9][150][note 1] [ ⚑ ] 33°49′N 79°22′W / 33.817°N 79.367°W / 33.817; -79.367 (Snows Island)
Jwaneng South Botswana Botswana 1.3 66 <66


[151][152] [ ⚑ ] 24°42′S 24°46′E / 24.7°S 24.767°E / -24.7; 24.767 (Jwaneng South)
Kamensk Southern Federal District Russia 25 49 Yes 48°21′N 40°30′E
Kebira Egypt Egypt 31 100 [153][154]
Kebira Crater.jpg
[ ⚑ ] 24°40′N 24°58′E / 24.667°N 24.967°E / 24.667; 24.967 (Kebira)
Kilmichael Mississippi United States 13 45 [155][156][157][158] [ ⚑ ] 33°30′N 89°33′W / 33.5°N 89.55°W / 33.5; -89.55 (Kilmichael)
Krk Croatia Croatia 12 40 [159][160] [ ⚑ ] 45°04′N 14°37′E / 45.06°N 14.62°E / 45.06; 14.62 (Krk)
Kurai Basin Altai Region Russia 20 199 <200


[161][162] [ ⚑ ] 50°12′N 87°54′E / 50.2°N 87.9°E / 50.2; 87.9 (Kurai)
La Dulce Argentina Argentina 2.8 0.445 0.445?


[163][114] [ ⚑ ] 38°13′S 59°13′W / 38.21°S 59.21°W / -38.21; -59.21 (La Dulce)
Labynkyr Russia Russia 67 150 150?


[164][9][165][166][note 1] [ ⚑ ] 62°19′30″N 143°05′24″E / 62.325°N 143.090°E / 62.325; 143.090 (Labynkyr)
Lac Iro Chad Chad 13 ? [167][3][168]
Lake Iro.jpg
[ ⚑ ] 10°10′N 19°40′E / 10.167°N 19.667°E / 10.167; 19.667 (Iro Lake)
Lairg Gravity Low Scotland Scotland 40 1200 [169] 58°1′12″N, 4°24′0″W
Lake Cheko Siberia Russia 50 0.0001 0.0001
(1908 AD)


[170] [ ⚑ ] 60°57′50″N 101°51′36″E / 60.964°N 101.86°E / 60.964; 101.86 (Cheko)
Lake Tai (Tai Hu) Jiangsu China 70 70 ± 5


365 365 ± 5


[171][172][173] [ ⚑ ] 31°14′N 120°8′E / 31.233°N 120.133°E / 31.233; 120.133 (Tai)
Loch Leven Scotland Scotland 18 18x8


290 [174][175] [ ⚑ ] 56°12′N 3°23′W / 56.2°N 3.383°W / 56.2; -3.383 (Loch Leven)
Lonar Deccan Plateau, Southern India India 1.83 0.57 ± 0.05 Yes [176]
Lorne Basin New South Wales Australia 30 250 250 ± 2


[177][178] [ ⚑ ] 31°36′S 152°37′E / 31.60°S 152.62°E / -31.60; 152.62 (Lorne)
Lycksele 2 Sweden Sweden 130 1500 1500 ± 300


[179][180][181] [ ⚑ ] 64°55′N 18°47′E / 64.92°N 18.78°E / 64.92; 18.78 (Lycksele)
Madagascar 3 Madagascar Madagascar 12 ? [182][183] [ ⚑ ] 18°50′20″S 46°13′16″E / 18.839°S 46.221°E / -18.839; 46.221 (Madagascar)
Magyarmecske anomaly Hungary Hungary 7 299 [184][185] [ ⚑ ] 45°57′N 17°58′E / 45.95°N 17.97°E / 45.95; 17.97 (Magyarmecske)
Mahuika New Zealand (offshore) New Zealand 20 20?


0.0006 0.0006
(1400 AD)


[186][187][67] [ ⚑ ] 48°18′S 166°24′E / 48.3°S 166.4°E / -48.3; 166.4 (Mahuika)
Manicouagan Quebec Canada 100 215.56 ± 0.05 Yes 51°23′N 68°42′W
Maniitsoq Greenland Greenland 100 3000 [188][189][190] [ ⚑ ] 65°15′N 51°50′W / 65.25°N 51.833°W / 65.25; -51.833 (Maniitsoq)
Mejaouda (El Mrayer) Mauritania Mauritania 3 540 <542?


[191][9][109][21][192] [ ⚑ ] 22°43′19″N 7°18′43″W / 22.722°N 7.312°W / 22.722; -7.312 (Mejaouda)
Merewether Newfoundland Canada 20 0.0009 0.0009
(1100 AD)


[193][194][note 1] [ ⚑ ] 58°02′N 64°03′W / 58.04°N 64.05°W / 58.04; -64.05 (Merewether)
Meseta de la Barda Negra Argentina Argentina 1.5 4 4 ± 1


[195][196] [ ⚑ ] 39°10′S 69°53′W / 39.167°S 69.883°W / -39.167; -69.883 (Barda Negra)
Middle-Urals Ring Russia Russia 475 400–550


542 >542


[197][198][199] [ ⚑ ] 56°N 56°E / 56°N 56°E / 56; 56 (Urals Ring)
Mistassini-Otish Quebec Canada 600 2200 [200][201] [ ⚑ ] 50°34′N 73°25′W / 50.57°N 73.42°W / 50.57; -73.42 (Mistassini lake)
Mount Ashmore dome Indian Ocean (in Timor Sea) 50 >50


35 [202][203][204] [ ⚑ ] 12°33′S 123°12′E / 12.55°S 123.2°E / -12.55; 123.2
Mousso Chad Chad 3.8 540 <542


[205][206] [ ⚑ ] 17°58′N 19°53′E / 17.967°N 19.883°E / 17.967; 19.883 (Mousso)
Mt. Oikeyama Japan Japan 90 0.03 0.030?


[207][208] [ ⚑ ] 35°24′18″N 138°00′47″E / 35.405°N 138.013°E / 35.405; 138.013 (Oikeyama)
Mulkarra South Australia Australia 17 105 [209][210] [ ⚑ ] 27°51′S 138°55′E / 27.85°S 138.92°E / -27.85; 138.92 (Mulkarra)
Nastapoka (Hudson Bay) arc Quebec Canada 450 1800 1800?


[211][9][212][213]
Arc Nastapoka.png
[ ⚑ ] 57°00′N 78°50′W / 57°N 78.833°W / 57; -78.833 (Hudson Bay)
Nadir Atlantic Ocean (Guinea Plateau, West Africa) ≥8.5 66 ± 0.8 [214] [ ⚑ ] 9°24′N 17°06′W / 9.4°N 17.1°W / 9.4; -17.1 (Nadir)
Ouro Ndia Mali Mali 3 2.6 <2.6


[215][9][21] [ ⚑ ] 14°59.8′N 4°30.0′W / 14.9967°N 4.5°W / 14.9967; -4.5 (Ouro Ndia)
Pantasma Nicaragua Nicaragua 10 ? [216] [ ⚑ ] 13°22′N 85°57′W / 13.37°N 85.95°W / 13.37; -85.95 (Pantasma)
Panther Mountain New York United States 10 375 [217][218][219]
Panther rosette stream pattern.gif
[ ⚑ ] 42°03′N 74°24′W / 42.05°N 74.4°W / 42.05; -74.4 (Panther Mountain)
Peerless Montana United States 6 470 470 ± 10


[220][221] [ ⚑ ] 48°48′N 105°48′W / 48.8°N 105.8°W / 48.8; -105.8 (Peerless)
Piratininga Paraná Brazil 12 117 [222][73][223] [ ⚑ ] 22°28′S 49°09′W / 22.467°S 49.15°W / -22.467; -49.15 (Piratininga)
Popigai Siberia Siberia 100 35.7±0.2 Yes 71°39′N 111°11′E
Praia Grande Santos Basin, offshore Brazil 20 84 [224][73][74] [ ⚑ ] 25°39′S 45°37′W / 25.65°S 45.617°W / -25.65; -45.617 (prai grande)
Ramgarh Rajasthan India 3 ? [225][226][227][note 1]
Ramgarh Crater.JPG
[ ⚑ ] 25°20′16″N 76°37′29″E / 25.33778°N 76.62472°E / 25.33778; 76.62472 (Ramgarh)
Ross Antarctic Ocean (Ross Sea) 600 600?


37 <38


[228][57][229] [ ⚑ ] 77°30′S 178°30′E / 77.5°S 178.5°E / -77.5; 178.5 (Ross)
Rubielos de la Cérida Spain Spain 80 80x40


35 30-40


[230][231][232][note 1]
Rubielos de la Cérida impact structure-karte topo.jpg
[ ⚑ ] 40°46′59″N 1°15′00″W / 40.783°N 1.25°W / 40.783; -1.25 (Rubielos)
Sakhalinka Pacific Ocean (NW) 12 70 [233][234][235][236][237] [ ⚑ ] 30°15′N 170°03′E / 30.25°N 170.05°E / 30.25; 170.05 (Sakhalinka)
São Miguel do Tapuio Piauí Brazil 22 120 [238][9][74][239][240][241] [ ⚑ ] 5°37.6′S 41°23.3′W / 5.6267°S 41.3883°W / -5.6267; -41.3883 (Sao Miguel Do Tapuio)
Shanghewan Jilin China 30 ? [242][243][244] [ ⚑ ] 44°29′N 126°11′E / 44.483°N 126.183°E / 44.483; 126.183 (Shangewan)
Shiva Indian Ocean 500 66 [245] [ ⚑ ] 18°40′N 70°14′E / 18.667°N 70.233°E / 18.667; 70.233 (Shiva)
Shiyli Kazakhstan Kazakhstan 5.5 46 46 ± 7


[246][247][note 1] [ ⚑ ] 49°10′N 57°51′E / 49.167°N 57.85°E / 49.167; 57.85 (Shiyli)
Silverpit Atlantic Ocean (North Sea) 20 60 60 ± 15


[248][249][250][251][252][253][254][255]
Silverpit northwest perspective.jpg
[ ⚑ ] 54°14′N 1°51′E / 54.233°N 1.85°E / 54.233; 1.85 (Silverpit)
Sirente Italy Italy 10 0.0017 0.0017
(320 ± 90 AD)


[256][257] [ ⚑ ] 42°10′38″N 13°35′45″E / 42.17722°N 13.59583°E / 42.17722; 13.59583 (Sirente)
Sithylemenkat Lake Alaska United States 12 0.033 0.033?


[258][259][260][261] [ ⚑ ] 66°07′34″N 151°23′20″W / 66.12611°N 151.38889°W / 66.12611; -151.38889 (Sithylemenkat)
Smerdyacheye Lake Russia Russia 20 0.02 0.01–0.03?


[262][263] Озеро Смердячье.jpg [ ⚑ ] 55°44′06″N 39°49′23″E / 55.735°N 39.823°E / 55.735; 39.823 (Smerdyacheye)
Sudan 1 (Red Sea Hills) Sudan Sudan 6 ? [264][265][266] [ ⚑ ] 17°57.1′N 37°56.1′E / 17.9517°N 37.935°E / 17.9517; 37.935 (Red Sea)
Sudan 2 (Bayuda) Sudan Sudan 10 ? [267][268][269]
A map of Sudan showing three craters
Mahas
Mahas
Bayuda
Bayuda
Red Sea Hills
Red Sea Hills
[ ⚑ ] 18°03.5′N 33°30.2′E / 18.0583°N 33.5033°E / 18.0583; 33.5033 (Bayuda)
Sudan 3 (Mahas) Sudan Sudan 2.8 ? [ ⚑ ] 20°01.9′N 30°13.7′E / 20.0317°N 30.2283°E / 20.0317; 30.2283 (Mahas)
Sudbury Ontario Canada 130 1849 Yes 46°36′N 81°11′W
Svetloyar Lake Russia Russia 40 0.0026 0.0026
(600 BC)


[270][271][note 1] 7-е чудо Поволжья.jpg [ ⚑ ] 56°49′08″N 45°05′35″E / 56.819°N 45.093°E / 56.819; 45.093 (Svetloyar)
Takamatsu Japan Japan 6 4-8


15 [272][273][274][275][276] [ ⚑ ] 34°18′N 134°03′E / 34.3°N 134.05°E / 34.3; 134.05 (Takamatsu)
Tarek (Gilf Kebir) Egypt Egypt 2.1 112 112?


[277][9][278][279] [ ⚑ ] 24°36′04″N 27°12′18″E / 24.601°N 27.205°E / 24.601; 27.205 (Tarek)
Tatarsky North Pacific Ocean (NW) 14 ? [280][281] [ ⚑ ] 49°57′35″N 141°23′40″E / 49.95972°N 141.39444°E / 49.95972; 141.39444 (Tatarsky1)
Tatarsky South Pacific Ocean (NW) 20 ? [282][281] [ ⚑ ] 48°17′38″N 141°23′40″E / 48.29389°N 141.39444°E / 48.29389; 141.39444 (Tatarsky2)
Tefé River Amazonas Brazil 15 65 65 ± 20


[283][74][284] [ ⚑ ] 4°57′S 66°03′W / 4.95°S 66.05°W / -4.95; -66.05 (Tefé)
Talundilly Queensland Australia 84 128 128 ± 5


[285][286][287] [ ⚑ ] 24°44′S 144°37′E / 24.73°S 144.62°E / -24.73; 144.62 (Talundilly)
Temimichat Mauritania Mauritania 0.7 2 2?


[288][9][289] [ ⚑ ] 24°15′N 9°39′W / 24.25°N 9.65°W / 24.25; -9.65 (Temimichat)
Tsenkher Mongolia Mongolia 3.6 5 [290][291][292] [ ⚑ ] 43°38′41″N 98°22′09″E / 43.64472°N 98.36917°E / 43.64472; 98.36917 (Tsenkher)
Toms Canyon New Jersey United States 22 35 [293][294][295][296] [ ⚑ ] 39°08′N 72°51′W / 39.133°N 72.85°W / 39.133; -72.85 (Toms Canyon)
Kara Nenetsia, offshore Russia 65 70.3 70.3 ± 2.2


Yes [297][298]
Kara crateri crater Russia lansat 7 image.gif
[ ⚑ ] 69°17′N 65°21′E / 69.28°N 65.35°E / 69.28; 65.35 (Ust-Kara)
Vélingara Senegal Senegal 48 31.5 23-40


[299][300]
Vélingara ring-structur in senegal.png
[ ⚑ ] 13°02′N 14°08′W / 13.033°N 14.133°W / 13.033; -14.133 (Vélingara)
Versailles Kentucky United States 1.5 400 <400


[301][302] [ ⚑ ] 38°05′N 84°40′W / 38.09°N 84.67°W / 38.09; -84.67 (Versailles)
Vredefort Free State South Africa 180-300 2023 Yes [303] 27°0′S 27°30′E
Vichada Vichada Colombia 50 30 30?


[304][9]
Vichada Structure Skylab G40B091120000.jpg
[ ⚑ ] 4°30′N 69°15′W / 4.5°N 69.25°W / 4.5; -69.25 (Vichada)
Victoria Island California United States 5.5 43 37-49


[305] [ ⚑ ] 37°53′N 121°32′W / 37.89°N 121.53°W / 37.89; -121.53 (Victoria Island structure)
Warburton East South Australia Australia 200 330 300-360


[306][307][308] [ ⚑ ] 28°00′S 140°30′E / 28°S 140.5°E / -28; 140.5 (Warbuton)
Warburton West South Australia Australia 200 330 300-360


[306][307][309]
Weaubleau (Weaubleau-Osceola) Missouri United States 19 330 330 ± 10


[310][311][312]
Weaubleau Structure shaded relief.jpg
[ ⚑ ] 38°00′N 93°36′W / 38.0°N 93.6°W / 38.0; -93.6 (Weaubleau)
Wembo-Nyama (Omeonga) DR Congo DR Congo 41 36-46


60 60?


[313][314][315] [ ⚑ ] 3°37′52″S 24°31′07″E / 3.63111°S 24.51861°E / -3.63111; 24.51861 (Wembo-Nyama ring structure)
Wilkes Land 2 Antarctica 480 375 250-500


[316]
Antarctica Map Wilkes L Crater.png
[ ⚑ ] 70°S 140°E / 70°S 140°E / -70; 140 (Wilkes)
Wolfe Creek Great Sandy Desert, Western Australia Australia 0.87 < 0.3 Yes
Woodbury Georgia United States 7 500 500 ± 100


[317][318][319][320] [ ⚑ ] 32°55′N 84°33′W / 32.92°N 84.55°W / 32.92; -84.55 (Woodbury)
Yallalie Western Australia Australia 12 99 99?


[321][9][322][323][324][325][note 1] [ ⚑ ] 30°26′40″S 115°46′16″E / 30.44444°S 115.77111°E / -30.44444; 115.77111 (Yallalie)
Zerelia West Greece Greece 20 0.007 0.0070
(5000 BC)


[326][327] [ ⚑ ] 39°09′48″N 22°42′32″E / 39.16333°N 22.70889°E / 39.16333; 22.70889 (Zerelia West)
Zerelia East Greece Greece 10 0.007 0.0070
(5000 BC)


[326][327] [ ⚑ ] 39°09′43″N 22°42′51″E / 39.16194°N 22.71417°E / 39.16194; 22.71417 (Zerelia East)

Overview

Russia's Lake Cheko is thought by one research group to be the result of the famous Tunguska event, although sediments in the lake have been dated back more than 5,000 years. There is highly speculative conjecture about the supposed Sirente impact (c. 320 ± 90 AD) having caused the Roman emperor Constantine's vision at Milvian Bridge.[328][better source needed]

The Burckle crater and Umm al Binni structure are proposed to be behind the floods that affected Sumerian civilization.[329][330] The Kachchh impact may have been witnessed by the Harappan civilization and mentioned as a fireball in Sanskrit texts.[331]

Shortly after the Hiawatha Crater was discovered, researchers suggested that the impact could have occurred as late as ~12,800 years ago, leading some to associate it with the controversial Younger Dryas impact hypothesis (YDIH).[332] James Kennett, a leading advocate of the YDIH said, "I'd unequivocally predict that this crater is the same age as the Younger Dryas."[333]

These claims were criticised by other scholars. According to impact physicist Mark Boslough writing for Skeptical Inquirer the first reports of the impact released by science journalist Paul Voosen focused on this being a young crater which according to Boslough "set the tone for virtually all the media reporting to follow". Boslough argued, based on evidence and statistical probability, that once the crater has been drilled and researched "it will turn out to be much older." He complained that this important discovery "was tainted by connections to a widely discredited hypothesis and speculations that did not make it through peer review".[333][334] The YDIH has since been refuted comprehensively by a team of earth scientists and impact experts.[335]

A 2022 study using Argon–Argon dating of shocked zircon crystals in impact melt rocks found outwash less than 10 km downstream of the glacier pushed the estimate back to around 57.99 ± 0.54 million years ago, during the late Paleocene.[336][125] Confirmation would require drilling almost one km (3,300 ft) through the ice sheet above the crater to obtain a sample of dateable, solidified impact melt from the crater.

The age of the Bloody Creek crater[337] is uncertain.

As the trend in the Earth Impact Database for about 26 confirmed craters younger than a million years old shows that almost all are less than two km (1.2 mi) in diameter (except the three km (1.9 mi) Agoudal and four km (2.5 mi) Rio Cuarto), the suggestion that two large craters, Mahuika (20 km (12 mi)) and Burckle (30 km (19 mi)), formed only within the last few millennia has been met with skepticism.[338][339][340] However, the source of the young (less than a million years old) and enormous Australasian strewnfield (c. 790 ka) is suggested to be a crater about 100 km (62 mi) across somewhere in Indochina,[341][342] with Hartung and Koeberl (1994) proposing the elongated 100 km × 35 km (62 mi × 22 mi) Tonlé Sap lake in Cambodia (visible in the map at the side) as a suspect structure.[343]

The Decorah crater has been conjectured as being part of the Ordovician meteor event.[344][better source needed]

Several twin impacts have been proposed, such as the Rubielos de la Cérida and Azuara (30–40 Ma),[345] Cerro Jarau and Piratininga (c. 117 Ma),[73] and Warburton East and West (300–360 Ma).[346] However, adjacent craters may not necessarily have formed at the same time, as demonstrated by the case of the confirmed Clearwater East and West lakes.

Some confirmed impacts like Sudbury or Chicxulub are also sources of magnetic anomalies[347] and/or gravity anomalies. The magnetic anomalies Bangui and Jackpine Creek,[143] the gravity anomalies Wilkes Land crater and Falkland Islands,[348] and others have been considered as being of impact origin. Bangui apparently has been discredited,[25][349] but appears again in a 2014 table of unconfirmed structures in Africa by Reimold and Koeberl.[3]

Several anomalies in Williston Basin were identified by Swatzky in the 1970s as astroblemes including Viewfield, Red Wing Creek, Eagle Butte, Dumas, and Hartney, of which only the last two are unconfirmed.[92]

The Eltanin impact has been confirmed (via an iridium anomaly and meteoritic material from ocean cores) but, as it fell into the Pacific Ocean, apparently no crater was formed. The age of Silverpit and the confirmed Boltysh crater (65.17 ± 0.64 Ma), as well as their latitude, has led to the speculative hypothesis that there may have been several impacts during the KT boundary.[350][351] Of the five oceans in descending order by area, namely the Pacific, Atlantic, Indian, Antarctic, and Arctic, only the smallest (the Arctic) does not yet have a proposed unconfirmed impact crater.

Craters larger than 100 kilometres (62 mi) in the Phanerozoic (after 541 Ma) are notable for their size as well as for the possible coeval events associated with them especially the major extinction events.

For example, the Ishim impact structure[139] is conjectured to be bounded by the late Ordovician-early Silurian (c. 445 ± 5 Ma),[140] the two Warburton basins have been linked to the Late Devonian extinction (c. 360 Ma),[308] both Bedout and the Wilkes Land crater have been associated with the severe Permian–Triassic extinction event (c. 252 Ma),[352][353] Manicouagan (c. 215 Ma) was once thought to be connected to the Triassic–Jurassic extinction event (c. 201 Ma)[354] but more recent dating has made it unlikely, while the consensus is the Chicxulub impact caused the one for Cretaceous–Paleogene (c. 66 Ma).

However, other extinction theories employ coeval periods of massive volcanism such as the Siberian Traps (Permian-Triassic) and Deccan Traps (Cretaceous-Paleogene).

Undiscovered but inferred

An approximate map of the strewnfield.
Australasian strewnfield. Shaded areas represent tektite finds.

There is geological evidence for impact events having taken place on Earth on certain specific occasions, which should have formed craters, but for which no impact craters have been found. In some cases this is because of erosion and Earth's crust having been recycled through plate tectonics, in others likely because exploration of the Earth's surface is incomplete, or because no actual crater was formed because the impacting object exploded as a cosmic air burst. Typically the ages are already known and the diameters can be estimated.

Parent crater of Expected crater diameter Age Notes
Pica glass Unknown 12 ka [355]
Libyan desert glass Unknown 29 Ma [356][357][358][359]
Dakhleh glass 0.4 km 150 ka [360][361]
Argentinian impact glasses Unknown 6, 114, and 445 ka;

5.3 and 9.2 Ma

journal=Earth and Planetary Science Letters|volume=219|issue=3–4|pages=221–238|doi= 10.1016/S0012-821X(04)00010-X|year=2004|bibcode=2004E&PSL.219..221S }}</ref>[362]
Australasian tektites 32–114 km 780 ka [342]
Central American tektites 14 km 820 ka [363][364][365]
Skye ejecta deposits Unknown 60 Ma [366]
Stac Fada Member 40 km 1.2 Ga [367][368][369]
Barberton Greenstone Belt spherules 500 km 3.2 Ga [370][371]
Marble Bar impact spherules "hundreds of kilometers" 3.4 Ga [372]

Mistaken identity

Some geological processes can result in circular or near-circular features that may be mistaken for impact craters. Some examples are calderas, maars, sinkholes, glacial cirques, igneous intrusions, ring dikes, salt domes, geologic domes, ventifacts, tuff rings, forest rings, and others. Conversely, an impact crater may originally be thought as one of these geological features, like Meteor Crater (as a maar) or Upheaval Dome (as a salt dome).

The presence of shock metamorphism and shatter cones are important criteria in favor of an impact interpretation, though massive landslides (such as the Köfels landslide of 7800 BC which was once thought to be impact-related) may produce shock-like fused rocks called "frictionite".[373]

See also

Notes and references

Notes

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 Shown as "proven" by Mikheeva (2017),[18][unreliable source?] not "confirmed" by EID (2018).[19]

References

  1. updated, Daisy Dobrijevic last (2021-10-29). "10 Earth impact craters you must see" (in en). https://www.space.com/10-earth-impact-craters-you-should-visit. 
  2. 2.0 2.1 Haines, P. W. (2005). "Impact cratering and distal ejecta: The Australian record". Australian Journal of Earth Sciences 52 (4–5): 481–507. doi:10.1080/08120090500170351. Bibcode2005AuJES..52..481H. https://www.researchgate.net/publication/236737663. 
  3. 3.0 3.1 3.2 3.3 Reimold, Wolf Uwe; Koeberl, Christian (2014). "Impact structures in Africa: A review". Journal of African Earth Sciences 93: 57–175. doi:10.1016/j.jafrearsci.2014.01.008. PMID 27065753. Bibcode2014JAfES..93...57R. 
  4. Acevedo, R.; Rocca, M. C.; Ponce, J.; Stinco, S. (2015). Impact Craters in South America. SpringerBriefs in Earth Sciences. Springer. ISBN 978-3-319-13092-7. 
  5. Chabou, M. C. (2016). "An updated inventory of meteorite impact structures in the Arab world". 1st ArabGU International Conference, Feb 2016, Algeria. https://www.researchgate.net/publication/304035970. 
  6. Crósta, Alvaro P.; Reimold, Wolf Uwe (2016). "Impact Craters in South America, by Acevedo R. D., Rocca M. C. L., Ponce J. F., and Stinco S. G. Heidelberg: Springer, 2015. 104 p. SpringerBriefs in Earth Sciences: South America and the Southern Hemisphere. ISBN 978-3-319-13092-7". Meteoritics & Planetary Science 51 (5): 996–999. doi:10.1111/maps.12632. 
  7. Rampino, M.R; Volk, T. (1996). "Multiple impact event in the Paleozoic: Collision with a string of comets or asteroids?". Geophysical Research Letters 23 (1): 49–52. doi:10.1029/95GL03605. Bibcode1996GeoRL..23...49R. https://pubs.giss.nasa.gov/docs/1996/1996_Rampino_ra05200y.pdf. Retrieved 2019-04-06. 
  8. "Acraman". http://www.passc.net/EarthImpactDatabase/New%20website_05-2018/Acraman.html. 
  9. 9.00 9.01 9.02 9.03 9.04 9.05 9.06 9.07 9.08 9.09 9.10 9.11 9.12 Expert Database on Earth Impact Structures (EDEIS), Accessed May 2016
  10. Murgab
  11. "Meteorite crater site of Ak-Bura". http://www.gettyimages.ca/detail/photo/meteorite-crater-site-of-ak-bura-in-the-ak-high-res-stock-photography/148574519. 
  12. Bacharev, A (1952), The Murgab meteorite crater. Astron. Tsirk., No 122, pp. 8–10
  13. Al Madafi
  14. Garvin, James B.; Blodget, Herbert W. (1986). "Suspected Impact Crater Near Al Madafi, Saudi Arabia". Meteoritics 21: 366. Bibcode1986Metic..21..366G. 
  15. Roger Weller. Al Madafi crater
  16. Warme, J.E.; Sandberg, C.A. (1996). "Alamo megabreccia: record of a Late Devonian impact in southern Nevada". GSA Today 6 (1): 1–7. https://www.geosociety.org/gsatoday/archive/6/1/pdf/i1052-5173-6-1-sci.pdf. 
  17. Morrow, JR; Sandberg, CA; Malkowski, K; Joachimski, MM (2009). "Carbon isotope chemostratigraphy and precise dating of middle Frasnian (lower Upper Devonian) Alamo Breccia, Nevada, USA". Palaeogeography, Palaeoclimatology, Palaeoecology 282 (1–4): 105–118. doi:10.1016/j.palaeo.2009.08.016. Bibcode2009PPP...282..105M. 
  18. Mikheeva, 2017.[full citation needed]
  19. List of confirmed impact craters by name - Earth Impact Database
  20. Anefis
  21. 21.0 21.1 21.2 A. Rossi (2002). Seven Possible New Impact Structures In Western Africa Detected On Aster Imagery, Lunar and Planetary Science XXXIII
  22. Roger Weller Anefis crater
  23. Aorounga
  24. Ocampo, A. C.; Pope, K. O. (1996). "Shuttle Imaging Radar (SIR-C) Images Reveal Multiple Impact Craters at Aorounga, Northern Chad". Lunar and Planetary Science 27: 977. Bibcode1996LPI....27..977O. 
  25. 25.0 25.1 S. Master & W. Reimold (2000). The impact cratering record of Africa: An updated inventory of proven, probable, possible, and discredited impact structures on the African continent, Catastrophic Events Conference 2000.
  26. Arganaty
  27. Zeilik, B. S. (1987). "The Arganaty cosmogenic crater in southern Kazakhstan and the ring structures associated with it". Akademiia Nauk SSSR, Doklady 297 (4): 925–928. Bibcode1987DoSSR.297..925Z. 
  28. Barash, M. (2012). "Mass Extinction of Ocean Organisms at the Paleozoic–Mesozoic Boundary: Effects and Causes". Oceanology 52 (2): 238–248. doi:10.1134/s000143701201002x. Bibcode2012Ocgy...52..238B. https://www.researchgate.net/publication/233961301. 
  29. Unnamed ("Arlit")
  30. David Rajmon (2010). Impact Field Studies Group
  31. Marc Fokker (2008). Astroforum Netherlands
  32. "Avak". http://www.passc.net/EarthImpactDatabase/New%20website_05-2018/Avak.html. 
  33. Azuara
  34. Bajada del Diablo
  35. R. D. Acevedo, J. Rabassa, M. J. Orgeira, et al. (2010) Bajada Del Diablo Impact Crater Strewn-Field, Patagonia, Argentina: The Largest Crater Field In The World? 73rd Annual Meteoritical Society Meeting
  36. Acevedo, R.D.; Rabassa, J.; Ponce, J.F.; Martínez, O.; Orgeira, M.J.; Prezzi, C.; Corbella, H.; González-Guillot, M. et al. (2012). "The Bajada del Diablo astrobleme-strewn field, central Patagonia Argentina: Extending the exploration to surrounding areas". Geomorphology 169–170: 151–164. doi:10.1016/j.geomorph.2012.04.020. Bibcode2012Geomo.169..151A. 
  37. Bajo Hondo
  38. M. C. Rocca (2005). BAJO HONDO, CHUBUT, PATAGONIA, ARGENTINA: A NEW METEORITE IMPACT CRATER IN BASALT?, 68th Annual Meteoritical Society Meeting
  39. Bangui
  40. Girdler, R.; Taylor, P.; Frawley, J. (1992). "A possible impact origin for the Bangui magnetic anomaly (Central Africa)". Tectonophysics 212 (1): 45–58. doi:10.1016/0040-1951(92)90139-w. Bibcode1992Tectp.212...45G. 
  41. "Barringer Meteor Crater and Its Environmental Effects". https://www.lpi.usra.edu/science/kring/epo_web/impact_cratering/enviropages/Barringer/barringerstartpage.html. 
  42. Bateke
  43. S. Master, G.R.J. Cooper and K. Klajnik (2013). The Bateke Plateau Structure – A New Possible 7 Km Diameter Quaternary Meteorite Impact Structure In Gabon: A Remote Sensing Study, 13th SAGA Biennial Conference & Exhibition
  44. Bedout
  45. Becker, L.; Poreda, R. J.; Basu, A. R.; Pope, K. O.; Harrison, T. M.; Nicholson, C.; Iasky, R. (2004). "Bedout: A Possible End-Permian Impact Crater Offshore of Northwestern Australia". Science 304 (5676): 1469–1476. doi:10.1126/science.1093925. PMID 15143216. Bibcode2004Sci...304.1469B. 
  46. Bee Bluff
  47. R. A. Graham (2005) Reinvestigation of the Bee Bluff Structure South of Uvalde, Texas, 'The Uvalde Crater'. Lunar and Planetary Science XXXVI (2005)
  48. Bee Bluff
  49. Björkö
  50. H. Henkel, A. Bäckström, B. Bergman, O. Stephansson, and M. Lindström (2005). Geothermal Energy from Impact Craters? The Björkö Study, Proceedings World Geothermal Congress 2005
  51. Bloody Creek
  52. Bohemia
  53. Papagiannis, Michael D. (1989). "Photographs from geostationary satellites indicate the possible existence of a huge 300 KM impact crater in the Bohemian region of Czechoslovakia". Meteoritics 24: 313. Bibcode1989Metic..24R.313P. 
  54. Rajlich, P. (1992). "Bohemian Circular Structure, Czechoslovakia: Search for the Impact Evidence". Abstracts of Papers Presented to the International Conference on Large Meteorite Impacts and Planetary Evolution. Held August 31 – September 2, 1992, in Sudbury, Ontario, Canada. 790. Lunar and Planetary Institute. 57. LPI Contribution 790. Bibcode1992LPICo.790...57R. 
  55. Bow City
  56. Bowers
  57. 57.0 57.1 L. P. Hrjanina (Khryanina), 2006.. "Once again about Kainozoic meteorite structures in the Ross Sea, Antarctica". http://www.lpi.usra.edu/meetings/LPSC98/pdf/1152.pdf. 
  58. "Evidence for a Possible Late Pliocene Impact in the Ross Sea, Antarctica". 2006. http://www.ldeo.columbia.edu/~dallas/abbott_publications/Gerard-Little_et_al_2006_Abstract_Ross.html. 
  59. Paul Rincon (2006). Space impact clue in Antarctica, BBC News
  60. Heinrich, P.V. (2003) Possible Meteorite Impact Crater in St. Helena Parish, Louisiana Search and Discovery Article. no. 50006. American Association of Petroleum Geologist, Tulsa, Oklahoma. Retrieved March 27, 2011.
  61. King, D.T., Jr., and Petruny, L.W.. 2007. Impact structures and craters of the U.S. Gulf coastal states. Gulf Coast Association of Geological Societies Transactions. v. 57, p. 409-425.
  62. Matherne, C., Karunatillake, S., Hood, D.R., Duxbury, J., Herr, A., Heinrich, P., Horn, M., Webb, A. and Sivils, A., 2020. Planar Deformation Features Found Within a Possible Impact Structure, the Brushy Creek Feature, St. Helena Parish, LA. Lunar and Planetary Science Conference No. 2326, p. 2361.
  63. Herr, Andrew. "Investigating the Brushy Creek Impact Crater". https://www.hou.usra.edu/meetings/lpsc2021/pdf/2737.pdf. 
  64. Quek, Long Xiang; Ghani, A. A; Badruldin, Muhammad Hafifi; Mokhtar, Saidin; Harith, Zuhar Zahir; Roselee, M. Hatta (2015). "Platinum Group Elements in Proximal Impactites of the Bukit Bunuh Impact Structure, Malaysia". Current Science 109 (12). doi:10.18520/v109/i12/2303-2308. 
  65. Jinmin, Mark; Saad, Rosli; Nordiana, M.M.; Mokhtar, Saidin (2017). "Trilogy possible meteorite impact crater at Bukit Bunuh, Malaysia using 2-D electrical resistivity imaging". AIP Conference Proceedings 1861 (1): 030012. doi:10.1063/1.4990899. https://www.researchgate.net/publication/318402069. 
  66. Burckle
  67. 67.0 67.1 Abbott, Dallas H., Martos, Suzanne, Elkinton, Hannah, Bryant, Edward F., Gusiakov, Viacheslav, and Breger, Dee (2006). Impact craters as sources of megatsunami generated chevron dunes. 2006 Philadelphia Annual Meeting (22–25 October 2006)
  68. Masse W. B., Bryant E., Gusiakov V., Abbott D., Rambolamanana G., Raza H., Courty M.A. (2006). Holocene Indian ocean cosmic impacts – the megatsunami chevron evidence from southern Madagascar. AGU, San Francisco
  69. Catalina
  70. Legg, Mark R.; Nicholson, Craig; Goldfinger, Chris; Milstein, Randall; Kamerling, Marc (2004). "Large enigmatic crater structures offshore southern California". Geophys. J. Int. 159 (2): 803–815. doi:10.1111/j.1365-246x.2004.02424.x. Bibcode2004GeoJI.159..803L. 
  71. Brandsma Dan, Lund Steve P.; Henyey Thomas, L. (1989). "Paleomagnetism of Late Quaternary marine sediments from Santa Catalina basin, California continental borderland .". J. Geophys. Res. B 94 (1): 547–564. doi:10.1029/JB094iB01p00547. Bibcode1989JGR....94..547B. 
  72. Jarau
  73. 73.0 73.1 73.2 73.3 A. Crósta, R. Romano (2004). Brazilian Impact Craters: A Review, 35th Lunar and Planetary Science Conference
  74. 74.0 74.1 74.2 74.3 A. Crósta, M. Vasconcelos (2013). Update On The Current Knowledge Of The Brazilian Impact Craters, 44th Lunar and Planetary Science Conference
  75. Charity Shoal
  76. Holcombe, Troy L.; Warren, John S.; Reid, David F.; Virden, William T.; Divins, David L. (2001). "Small Rimmed Depression in Lake Ontario: An Impact Crater?". Journal of Great Lakes Research 27 (4): 510–517. doi:10.1016/S0380-1330(01)70664-8. 
  77. Holcombe, Troy L.; Youngblut, Scott; Slowey, Niall (2013). "Geological structure of Charity Shoal crater, Lake Ontario, revealed by multibeam bathymetry". Geo-Marine Letters 33 (4): 245–252. doi:10.1007/s00367-013-0322-6. Bibcode2013GML....33..245H. 
  78. Suttak, P.A., 2013, High-resolution lake-based magnetic mapping and modeling of basement structures, with examples from Küçükçekmece Lagoon, Turkey and Charity Shoal, Lake Ontario. unpublished MS thesis, School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario. 113 pp.
  79. Assis Fernandes V., Hopp J., Schwarz W.H., Fritz J.P., and Trieloff M. (2019) 40Ar-39Ar step heating of North American tektites and of impact melt rock samples from the Chesapeake Bay impact structure. Geochimica et Cosmochimica Acta 255, 289-308. https://doi.org/10.1016/j.gca.2019.03.004
  80. "Clearwater East". http://www.passc.net/EarthImpactDatabase/New%20website_05-2018/ClearwaterEast.html. 
  81. Corossol
  82. Higgins, M.D., P. Lajeunesse, G. St-Onge, R. Sanfacon, and M. Duchesne, 2013, Impact Breccia Clast from the Corossol Crater, Canada. 76th Annual Meteoritical Society Meeting. Meteoritics and Planetary Science Supplement. id.5190.
  83. Lajeunesse, Patrick; St-Onge, Guillaume; Locat, Jacques; Duchesne, Mathieu J.; Higgins, Michael D.; Sanfaçon, Richard; Ortiz, Joseph (2013). "The Corossol structure: A possible impact crater on the seafloor of the northwestern Gulf of St. Lawrence, Eastern Canada". Meteoritics & Planetary Science 48 (12): 2542–2558. doi:10.1111/maps.12224. Bibcode2013M&PS...48.2542L. 
  84. Lajeunesse, P., Duchesne, M.J., St-Onge, G., Locat, J., Higgins, M., Sanfaçon, R. and Ortiz, J., 2016. The Corossol Structure: a glaciated crater of possible impact origin in the northwestern Gulf of St Lawrence, eastern Canada. In Dowdeswell, J. A., Canals, M., Jakobsson, M., Todd, B. J., Dowdeswell, E. K. & Hogan, K. A. (eds) 2016. Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient. Geological Society, London, Memoirs, 46(1), pp.127–128.
  85. Darwin
  86. Decorah
  87. Briggs, D.E.; Liu, H.P.; McKay, R.M.; Witzke, B.J. (2018). "The Winneshiek biota: exceptionally well-preserved fossils in a Middle Ordovician impact crater". Journal of the Geological Society 175 (6): 865–874. doi:10.1144/jgs2018-101. Bibcode2018JGSoc.175..865B. 
  88. French, B.M., McKay, R.M., Liu, H.P., Briggs, D.E. and Witzke, B.J., 2018. "The Decorah structure, northeastern Iowa: geology and evidence for formation by meteorite impact." Geological Society of America Bulletin, 130(11–12), pp. 2062–2086.
  89. "Potential asteroid impact identified in western Queensland". Geoscience Australia. 2015-03-17. http://www.ga.gov.au/news-events/news/latest-news/potential-asteroid-impact-identified-in-western-queensland. 
  90. Glikson, A.; Korsch, R.J.; Milligan, P. (2016). "The Diamantina River ring feature, Winton region, western Queensland". Australian Journal of Earth Sciences 63 (5): 1–11. doi:10.1080/08120099.2016.1220978. Bibcode2016AuJES..63..653G. https://www.researchgate.net/publication/309018227. Retrieved 2019-04-06. 
  91. Dumas
  92. 92.0 92.1 92.2 Gubins, A. & Strangway, D. (1978). "Magnetic Fields Associated with a Probable Late Cretaceous Astrobleme at Dumas, Saskatchewan", Lunar and Planetary Science IX, pp. 433–435
  93. Duolun
  94. Wu Siben (1989). "Geologic feature of the Duolun impact crater". Lunar and Planetary Science Conference 20: 1219. Bibcode1989LPI....20.1219W. 
  95. Eltanin
  96. Shuvalov V.V. (2006). Numerical modeling of the Eltanin impact: determination of projectile size and tsunami amplitude. 40 ESLAB Symposium: 1 International Conference on Impact Cratering in the Solar System, Noordwijk, 8–12 May 2006, Noordwijk: ESA, pp. 201-202
  97. Weiss, Robert; Lynett, Patrick; Wünnemann, Kai (2015). "The Eltanin impact and its tsunami along the coast of South America: Insights for potential deposits". Earth and Planetary Science Letters 409: 175–181. doi:10.1016/j.epsl.2014.10.050. Bibcode2015E&PSL.409..175W. 
  98. Faya Basin
  99. M. Schmieder and E. Buchner (2010). The Faya Basin (Chad) revisited – structural insights from central peak morphology and potential Martian analogs, Nördlingen Ries Crater Workshop (2010).
  100. Rocca, Maximiliano C. L.; Presser, Jaime Leonardo Báez; (2015) "A possible new very large impact structure in Falkland Islands", Historia Natural, Tercera Series, Volumen 5(2)
  101. Rocca, Maximiliano C. L.; Rampino, Michael R.; Presser, Jaime Leonardo Báez (2017). "Geophysical evidence for a large impact structure on the Falkland Plateau". Terra Nova 29 (4): 233–37. doi:10.1111/ter.12269. Bibcode2017TeNov..29..233R. 
  102. Reimold, W.U.; Crósta, A.P.; Koeberl, C.; Hauser, N. (2017). "Comment on "Geophysical evidence for a large impact structure on the Falkland (Malvinas) Plateau"". Terra Nova 29 (6): 409–410. doi:10.1111/ter.12284. Bibcode2017TeNov..29..233R. 
  103. McCarthy, D.; Aldiss, Michael D.; Arsenikos, S.; Stone, P.; Richards, P. (2017). "Comment on "Geophysical evidence for a large impact structure on the Falkland (Malvinas) Plateau"". Terra Nova 29 (6): 411–415. doi:10.1111/ter.12285. Bibcode2017TeNov..29..233R. http://nora.nerc.ac.uk/id/eprint/525290/1/McCarthy%20et%20al%20Terra_Nova%202017.pdf. 
  104. Acevedo, R. D.; Rocca, M. C. L.; Ponce, J.; Stinco, S. G. (2015). Impact Craters in South America. Springer. p. 23. ISBN 978-3-319-13093-4. https://books.google.com/books?id=W226CAAAQBAJ. 
  105. Fried Egg
  106. Amos, J (2009) 'Fried Egg' may be impact crater BBC News.
  107. Garet El Lefet
  108. Roger Weller. Garet El Lefet crater
  109. 109.0 109.1 Classen, J. (1977). "Catalogue of 230 Certain, Probable, Possible, and Doubtful Impact Structures". Meteoritics 12 (1): 61–78. doi:10.1111/j.1945-5100.1977.tb00332.x. Bibcode1977Metic..12...61C. 
  110. Tornabene, L.L., 2001 The Gatun Structure: A geological assessment of a newly recognized impact structure near Lake Gatun in the Republic de Panama. Master of Science thesis. University of South Florida, Tampa, Florida, USA.
  111. Heckadon-Moreno, S, 2013. Livio Tornabene y el meteorito de Gatun. Epocas. 28 (11):10–11.
  112. LeBlanc, J., 2021. Stratigraphic Lexicon: The Onshore Cenozoic Sedimentary Formations of The Republic of Panama. Biosis: Biological Systems, 2(1), pp.1-173.
  113. General San Martín
  114. 114.0 114.1 Harris, R. S.; Schultz, P. H.; Zárate, M. A. (2007) La Dulce Crater: Evidence For A 2.8 Km Impact Structure In The Eastern Pampas Of Argentina, 38th Lunar and Planetary Science Conference
  115. R. D. Acevedo, M. Rocca, J. Rabassa and J. F. Ponce Meteorite Impact Craters In South America: A Brief Review. 74th Annual Meteoritical Society Meeting (2011)
  116. Gnargoo
  117. Iasky, R. P.; Glikson, A. Y. (2005). "Gnargoo: A possible 75 km-diameter post-Early Permian – pre-Cretaceous buried impact structure, Carnarvon Basin, Western Australia". Australian Journal of Earth Sciences 52 (4–5): 575–586. doi:10.1080/08120090500170377. Bibcode2005AuJES..52..575I. 
  118. Monteiro, J. F. (1991). "The Guarda Circular Structure: A Possible Complex Impact Crater". Abstracts of the Lunar and Planetary Science Conference 22: 915–916. Bibcode1991LPI....22..915M. 
  119. Van Zalinge, M. E. (2012). The Guarda structure, NE-Portugal: a meteorite impact crater or not? (Thesis). Utrecht University, Utrecht. p. 83.
  120. Van Zalinge, M. E.; Hamers, M. F.; Drury, M. R. (2012). "The Guarda structure (Portugal): impact structure or not? Microstructural studies of quartz, zircon and monazite". Meteoritics and Planetary Science Supplement 75: 5045–5046. 
  121. Hartney
  122. Anderson, C. (1980). "A Seismic Reflection Study of a Probable Astrobleme near Hartney, Manitoba". Canadian Journal of Exploration Geophysics 16: 7. http://csegjournal.com/assets/pdfs/archives/1980_12/1980_Anderson_C_manitoba_astrobleme.pdf. 
  123. Hiawatha
  124. Kjær, Kurt H. (2018). "A large impact crater beneath Hiawatha Glacier in northwest Greenland". Science Advances 4 (11): eaar8173. doi:10.1126/sciadv.aar8173. PMID 30443592. Bibcode2018SciA....4.8173K. 
  125. 125.0 125.1 Kenny, Gavin G.; Hyde, William R.; Storey, Michael; Garde, Adam A.; Whitehouse, Martin J.; Beck, Pierre; Johansson, Leif; Søndergaard, Anne Sofie et al. (11 March 2022). "A Late Paleocene age for Greenland's Hiawatha impact structure". Science Advances 8 (10): eabm2434. doi:10.1126/sciadv.abm2434. PMID 35263140. Bibcode2022SciA....8M2434K. 
  126. Hico
  127. J. Glidewell (2009). SEISMIC DATA THROUGH THE HICO STRUCTURE: A POSSIBLE IMPACT FEATURE IN NORTHCENTRAL TEXAS, 40th Lunar and Planetary Science Conference
  128. Wiberg Leanne (1982). The Hico Structure: a possible impact structure in north-central Texas, USA. Lunar and Planet. Sci. 13: Abstr. Pap. 13th Lunar and Planet. Sci. Conf., Houston, Tex., March 15–19, Pt 2., Houston, Tex., pp. 863–864
  129. Hotchkiss
  130. M. Mazur and R. Stewart (1998). Interpreting the Hotchkiss structure: A possible meteorite impact feature in northwestern Alberta, Consortium for Research in Elastic Wave Exploration Seismology (CREWES).
  131. Howell
  132. B. Deane, P. Lee, K. Milam, J. Evenick, and R.Zawislak (2004). THE HOWELL STRUCTURE, LINCOLN COUNTY, TENNESSEE: A REVIEW OF PAST AND CURRENT RESEARCH, Lunar and Planetary Science XXXV
  133. Milam, K. A., Henderson, T., Deane, B. (2014). An Assessment Of Shock Metamorphism In Breccias From The Howell Structure, Lincoln County, Tennessee, US, Abstracts of the 2014 GSA Annual Meeting, Geological Society of America
  134. Ibn-Batutah
  135. Ghoneim, Eman M. (2009). "Ibn-Batutah: A possible simple impact structure in southeastern Libya, a remote sensing study". Geomorphology 103 (3): 341–350. doi:10.1016/j.geomorph.2008.07.005. Bibcode2009Geomo.103..341G. 
  136. Osinski, Gordon R.; Grieve, Richard A. F.; Ferrière, Ludovic; Losiak, Ania; Pickersgill, Annemarie; Cavosie, Aaron J.; Hibbard, Shannon M.; Hill, Patrick et al. (2022-07-21). "Impact Earth: A review of the terrestrial impact record" (in en). Earth-Science Reviews 232: 104112. doi:10.1016/j.earscirev.2022.104112. ISSN 0012-8252. Bibcode2022ESRv..23204112O. https://www.sciencedirect.com/science/article/pii/S0012825222001969. 
  137. Losiak, A.; Jõeleht, A.; Plado, J.; Szyszka, M.; Kirsimäe, K.; Wild, E. M.; Steier, P.; Belcher, C. M. et al. (February 2020). "Determining the age and possibility for an extraterrestrial impact formation mechanism of the Ilumetsa structures (Estonia)" (in en). Meteoritics & Planetary Science 55 (2): 274–293. doi:10.1111/maps.13431. ISSN 1086-9379. Bibcode2020M&PS...55..274L. 
  138. Ishim
  139. 139.0 139.1 Frank Dachille (1976). (1976). "Frequency of the formation of large terrestrial impact craters". Meteoritics 11: 270. Bibcode1976Metic..11..270D. 
  140. 140.0 140.1 Zeylik B. S.; Seytmuratova E. Yu, 1974: A meteorite-impact structure in central Kazakhstan and its magmatic-ore controlling role. Doklady Akademii Nauk SSSR: 1, pp. 167–170
  141. Iturralde
  142. Jackpine Creek
  143. 143.0 143.1 S. Goussev, R. Charters, J. Peirce and W. Glenn (2002). Jackpine Creek Magnetic Anomaly: A Case of the HRAM Prospect Scale Interpretation . CSEG: The Canadian Society of Exploration Geophysicists
  144. Jalapasquillo
  145. Maupome, L. (1974). "Possible Meteorite Crater in Mexico". Revista Mexicana de Astronomía y Astrofísica 1: 81–. Bibcode1974RMxAA...1...81M. 
  146. Jebel Hadid
  147. Schmieder, Martin; Buchner, Elmar; Le Heron, Daniel Paul (2009). "The Jebel Hadid structure (Al Kufrah Basin, SE Libya) – A possible impact structure and potential hydrocarbon trap?". Marine and Petroleum Geology 26 (3): 310–318. doi:10.1016/j.marpetgeo.2008.04.003. 
  148. Jeptha Knob
  149. Snows Island
  150. Talwani, Pradeep; Wildermuth, Eric; Parkinson, Chris D. (2003). "An impact crater in northeast South Carolina inferred from potential field data". Geophysical Research Letters 30 (7): 1366. doi:10.1029/2003GL017051. Bibcode2003GeoRL..30.1366T. 
  151. Jwaneng South
  152. Sharad Master, Brad Pitts and Marek Wendorff (2009). Jwaneng South Structure, Botswana: a New 1.3 km Diameter Buried Cenozoic Impact Crater Discovered by Airship-mounted Gravity Gradometer , 11th SAGA Biennial Technical Meeting and Exhibition
  153. Kebira
  154. Reimold, W.U.; Ch, Koeberl (2014). "Impact structures in Africa: A review". J. Afr. Earth Sci. 93: 57–175. doi:10.1016/j.jafrearsci.2014.01.008. PMID 27065753. Bibcode2014JAfES..93...57R. 
  155. Kilmichael
  156. M.S. Huber, D.T. King, Jr., L.W. Petruny, and C. Koeberl (2013). REVISITING KILMICHAEL (MISSISSIPPI), A POSSIBLE IMPACT STRUCTURE, 44th Lunar and Planetary Science Conference
  157. Robertson P.B., Butler M.D. (1982). New evidence for the impact origin of Kilmichael Mississippi. Lunar and Planet. Sci. 13: Abstr. Pap. 13th Lunar and Planet. Sci. Conf., Houston, Tex., March 15–19, 1982. Pt 2, Houston, Tex., pp. 653–654
  158. King D.T. Petruny Jr. and L.W. (2002). COSMIC IMPACT IN THE COASTAL PLAIN OF MISSISSIPPI? THE RIDDLE THE OF THE KILMICHAEL STRUCTURE 65th Annual Meteoritical Society Meeting
  159. Krk
  160. T. Marjanac, A. Tomša, Lj. Marjanac, M. Calogovic & S. Fazinic (2015). Krk impact structure ejecta breccia and melt rocks on the islands of Krk and Rab, Croatian Adriatic: A clue on the impact target lithology, Bridging the Gap III (2015)
  161. Kurai Basin
  162. S. A. Vishnevsky (2007). The Kurai Basin, Altai mountains (Russia): First evidences of impact origin, Lunar and Planetary Science XXXVIII (2007)
  163. La Dulce
  164. Labynkyr
  165. Dietz, Robert S.; McHone, John (1974). "Impact structures from ERTS imagery". Meteoritics 9: 329. Bibcode1974Metic...9..329D. 
  166. Roger Weller. Labynkyr ring
  167. Lac Iro
  168. James B. Garvin (1986). POSSIBLE IMPACT STRUCTURES IN CENTRAL AFRICA
  169. Lairg
  170. (in Russian) Lake Cheko
  171. Tai Hu
  172. Roger Weller. Tai Hu crater
  173. Wang, K.; Geldsetzer, H. H. J. (1992). "A late Devonian impact event and its association with a possible extinction event on Eastern Gondwana". Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution: 77. Bibcode1992lmip.conf...77W. 
  174. Loch Leven
  175. B. J. Hamill (2003). The Loch Leven Crater: Anatomy Of A Low-Angle Oblique Impact Structure, Large Meteorite Impacts
  176. "Lonar". http://www.passc.net/EarthImpactDatabase/New%20website_05-2018/Lonar.html. 
  177. Lorne
  178. Tonkin, P. C. (1998). "Lorne Basin, New South Wales: Evidence for a possible impact origin?". Australian Journal of Earth Sciences 45 (5): 669–671. doi:10.1080/08120099808728423. Bibcode1998AuJES..45..669T. 
  179. Lycksele 2
  180. D. Nisca, H. Thunehed, L.J. Pesonen, S-Å. Elming (1997). The Lycksele structure, a huge ring formation in northern Sweden: result of an impact?, Large Meteorite Impacts and Planetary Evolution
  181. Pesonen, L. J. (1996). "The impact cratering record of Fennoscandia". Earth, Moon, and Planets 72 (1–3): 377–393. doi:10.1007/BF00117542. Bibcode1996EM&P...72..377P. 
  182. Madagascar 3
  183. Roger Weller. Madagascar structure
  184. Bodosky, T.; Kis, M.; Kummer, I.; Don, G. (2006). "The telluric conductivity anomaly at Magyarmecske: is it aburied impact crater?". 40th ESLAB–First International Conference on Impact Cratering in the Solar System–Proceedigs CD. Noordwijks, the Netherlands: 221–223. http://sci.esa.int/science-e/www/object/doc.cfm?fobjectid=40243. 
  185. Bodosky, T.; Don, G.; Kis, MI.; Kummer, I. (2007). "Is the Magyarmecske telluric conductivity anomaly a buried impact structure?". Central European Geology 50 (3): 199–223. doi:10.1556/CEuGeol.50.2007.3.2. Bibcode2007CEJGl..50..199B. https://www.researchgate.net/publication/250010202. 
  186. Mahuika
  187. Abbott, D.H., A. Matzen, E.A. Bryant, and S.F. Pekar (2003). Did a bolide impact cause catastrophic tsunamis in Australia and New Zealand?. Geological Society of America Abstracts with Programs, 35:168
  188. Maniitsoq
  189. Garde, Adam A.; McDonald, Iain; Dyck, Brendan; Keulen, Nynke (2012). "Searching for giant, ancient impact structures on Earth: The Mesoarchaean Maniitsoq structure, West Greenland". Earth and Planetary Science Letters 337–338: 197–210. doi:10.1016/j.epsl.2012.04.026. Bibcode2012E&PSL.337..197G. 
  190. Scherst, Anders; Garde, Adam A. (30 July 2013). "Complete hydrothermal re-equilibration of zircon in the Maniitsoq structure, West Greenland: A 3001 Ma minimum age of impact?". Meteoritics & Planetary Science 48 (8): 1472–1498. doi:10.1111/maps.12169. Bibcode2013M&PS...48.1472S. 
  191. Mejaouda
  192. Roger Weller. Mejaouda crater
  193. Merewether crater
  194. J. B. Garvin and J. J. Frawley (2008). Geometric Properties Of The Merewether Structure, Newfoundland, Canada.Lunar and Planetary Science XXXIX (2008)
  195. Meseta de la Barda Negra
  196. A.C. Ocampo, A.C. Garrido, J. Rabassa, M.C. Rocca, J.C. Echaurren, and E. Mazzoni (2005). A Possible Impact Crater In Basalt At Meseta De La Barda Negra, Neuquen, Argentina, 68th Annual Meteoritical Society Meeting
  197. Middle Urals
  198. G. Burba (1991). Middle-Urals Ring structure, USSR: Definition, description, possible planetary analogues, Lunar and Planetary Science conference XXII.
  199. G. Burba (2003). The geologic evolution of the Ural Mountains: A supposed exposure to a giant impact . Microsymposium 38, MS011
  200. Mistassini
  201. S. Genest and F. Robert The Mistassini-Otish impact structure, Northern Quebec, Canada: an update – 1987
  202. Mount Ashmore
  203. Glikson, A.; Jablonski, D.; Westlake, S. (2010). "Origin of the Mt Ashmore structural dome, west Bonaparte Basin, Timor Sea". Australian Journal of Earth Sciences 57 (4): 411–430. doi:10.1080/08120099.2010.481327. Bibcode2010AuJES..57..411G. 
  204. Examining a new asteroid crater found in the Timor Sea . ScienceWise 2010, Australian National Uni
  205. Mousso
  206. Buchner, Elmar; Schmieder, Martin (2007). "Mousso structure: A deeply eroded, medium-sized, complex impact crater in northern Chad?". Journal of African Earth Sciences 49 (3): 71–78. doi:10.1016/j.jafrearsci.2007.06.003. Bibcode2007JAfES..49...71B. 
  207. Oikeyama
  208. Sakamoto, Masao; Gucsik, Arnold; Nishido, Hirotsugu; Ninagawa, Kiyotaka; Okumura, Tasuku; Toyoda, Shin (2010), "Micro Raman spectroscopy of anomalous planar microstructures in quartz from Mt. Oikeyama: Discovery of a probable impact crater in Japan", Meteoritics and Planetary Science 45 (1): 32, doi:10.1111/j.1945-5100.2009.01003.x, Bibcode2010M&PS...45...32S 
  209. Mulkarra
  210. J. B. Plescia (1999). Mulkarra Impact Structure, South Australia: A Complex Impact Structure, Lunar and Planetary Science XXX
  211. Nastapoka
  212. Dietz R.S., McHone J.F. (1990). Chesterfield structure (Hudson Bay): possible astrobleme. Lunar and Planet. Sci.: Abstr. Pap. 21st Lunar and Planet. Sci. Conf., March 12–16. Vol. 21, Houston (Tex.), p. 286
  213. Brookfield Michael (2006). The great arc of eastern Hudson Bay, Canada: part of a multi-ringed impact basin. 40 ESLAB Symposium: 1 International Conference on Impact Cratering in the Solar System, Noordwijk, 8–12 May 2006, Noordwijk: ESA, p. 35
  214. Nicholson, Uisdean (2022). "The Nadir Crater offshore West Africa: A candidate Cretaceous-Paleogene impact structure". Science Advances 8 (33): eabn3096. doi:10.1126/sciadv.abn3096. PMID 35977017. Bibcode2022SciA....8N3096N. 
  215. Ouro Ndia
  216. Pantasma
  217. Panther Mountain
  218. Isachsen, Y.W. (1988). "Metallic spherules and a microtektite support the interpretation of a buried impact crater beneath Panther Mountain in the central Catskill Mountains, New York". Meteoritics & Planetary Science 33 (4): 74. Bibcode1998M&PSA..33R..74I. 
  219. Isachsen Y.W., Wright S.F., Revetta F.A., Dineen R.J. (1992). The Panther mountain circular structure, a possible buried meteorite crater. Pap. Present. Int. Conf. Large Meteorite Impacts and Planet. Evol., Sudbury, Aug. 31 – Sept. 2, 1992, Houston (Tex.), p. 40
  220. Peerless
  221. J.M. Comstock and J.R. Morrow (2000). PEERLESS STRUCTURE SOUTHWESTERN DANIELS COUNTY, MONTANA: A PROBABLE MIDORDOVICIAN IMPACT EVENT, Lunar and Planetary Science XXXI
  222. Piratininga
  223. Hachiro J. (2000). Four impact cratering on the Parana sedimentary Basin (South America). The 31st International Geological Congress, Rio de Janeiro, Aug. 6–17, 2000. Rio de Janeiro: Geol. Surv. Braz., p. 6424
  224. Praia Grande
  225. Ramgarh
  226. Nayak V.K. (1997). The circular structure at Ramgarh, India: an astrobleme(?). LPI Contrib., No. 922, p. 31
  227. Master, S.; Pandit, M.K. (1999). "New evidence for an impact origin of the Ramgarh structure, Rajasthan, India .". Meteoritics & Planetary Science 34 (4): 79. Bibcode1999M&PSA..34R..79M. 
  228. Ross
  229. Berg J.H. (1991). Crustal xenoliths from Cape McCormick crater, Northern Victoria Land . 6th Int. Symp. Antarct. Earth Eci., Ranran-machi, 9–13 Sept., 1991, Abstr. - [Tokyo], p. 49
  230. Rubielos de la Cérida
  231. Bohor B.F., Foord E.E., Modreski P.J. (1985). Extraterrestrially-derived magnesioferrite at the K-T boundary, Caravaca, Spain. Lunar and Planet. Sci. Vol. 16: Abstr. Pap. 16th Conf., March 11–15, 1985. Pt 1, Houston, Tex., pp. 77–78
  232. Langenhorst, F.; Deutsch, A. (1996). "The Azuara and Rubielos Structures, Spain: Twin Impact Craters or Alpine Thrust Systems? TEM Investigations on Deformed Quartz Disprove Shock Origin". Lunar and Planetary Science Conference 27: 725. Bibcode1996LPI....27..725L. 
  233. Sakhalinka
  234. B. Levin, E. Gretskaya, G. Nemchenko (2006). A new astrobleme in the Pacific Ocean, Doklady Earth Sciences, 2006, Vol. 411, No. 8, pp. 1336–1338.
  235. Bostwick Jennifer A., Kyte Frank T. (1993). Impact mineralogy and chemistry of the cretaceous-tertiary boundary at DSDP site 576. Lunar and Planet. Sci. Vol. 24. Abstr. Pap. 24th Lunar and Planet. Sci. Conf., March 15–19, 1993. Pt 1., Houston (Tex.), p. 157
  236. Kyte, Frank T.; Bostwick, Jennifer A. (1995). "Magnesioferrite spinel in Cretaceous/Tertiary boundary sediments of the Pacific basin: Remnants of hot, early ejecta from the Chicxulub impact?". Earth and Planetary Science Letters 132 (1–4): 113–127. doi:10.1016/0012-821X(95)00051-D. Bibcode1995E&PSL.132..113K. 
  237. Kyte Frank T. (1996). A piece of the KT bolide?. Lunar and Planet. Sci. Vol. 27. Abstr. Pap. 27th Lunar and Planet. Sci. Conf., March 18–22, 1996. Pt 2, Houston (Tex.), p. 717
  238. São Miguel do Tapuio
  239. W. D. MacDonald, A. P. Crosta, J. Francolin (2006) Structural Dome At São Miguel do Tapuio, Piaui, Brazil, 69th Annual Meteoritical Society Meeting
  240. Castelo Branco R.M.G. (2000). Some evidences on northeast Brazilian impact structures (astroblemes). The 31st International Geological Congress, Rio de Janeiro, Aug. 6–17, 2000, Rio de Janeiro: Geol. Surv. Braz., p. 4479
  241. Castelo Branco R.M.G., Lopes de Castro D. (2004). Geological, geophysical and imaging data of Sao Miguel do Tapuio (SMT) astrobleme, Brazil. 67th Annual Meteoritical Society Meeting
  242. Shanghewan
  243. Dietz, R. S.; McHone, J. F. (1991). "Astroblemes Recently Confirmed with Shatter Cones". 54th Annual Meeting of the Meteoritical Society 54: 56. Bibcode1991LPICo.766...56D. 
  244. Wu, S. (1988). "The Shanghewan Impact Crater, China". Lunar and Planetary Science Conference 19: 1296. Bibcode1988LPI....19.1296W. 
  245. Shiva
  246. Shiyli
  247. S. A. Vishnevsky (2007). Shiyli Dome, Kazakhstan: Origin Of Central Uplift By Elastic Response, Workshop on Impact Cratering II
  248. Silverpit
  249. "A 20-km-diameter multi-ringed impact structure in the North Sea". Nature 418 (6897): 520–523. 2002. doi:10.1038/nature00914. PMID 12152076. Bibcode2002Natur.418..520S. 
  250. doi:10.1144/0016-764903-1
  251. Collins G.S., Turtle E.P., Melosh H.J. (2003). Numerical simulations of silverpit crater collapse: a comparison of Tekton and SALES . LPI Contrib., No. 1155, p. 18
  252. Stratford R. (2004). Bombarded Britain: A Search for British Impact Structures // Imperial College Press, London
  253. Collins G., Pain C. C., Wilson C. (2006) MODELLING IMPACT CRATER COLLAPSE IN THREE DIMENSIONS
  254. Conway Z.K., Haszeldine S., Rider M. (2006). Determining the origin of the Silverpit crater, UK southern North Sea: can you prove the existence of a meteorite crater without geochemical or mineralogical data?. 40 ESLAB Symposium: 1 International Conference on Impact Cratering in the Solar System, Noordwijk, 8–12 May 2006, Noordwijk: ESA, P. 53
  255. Cartwright J., Davies R., Stewart S., Wall M. (2006) BURIAL OF THE SILVERPIT METEORITE CRATER
  256. Sirente
  257. Speranza, F.; Nicolosi, I.; Ricchetti, N.; Etiope, G.; Rochette, P.; Sagnotti, L.; De Ritis, R.; Chiappani, M. (2009). "The "Sirente crater field", Italy". J. Geophys. Res. B 114 (3): B03103/1. doi:10.1029/2008JB005759. 
  258. Mikheeva, A.V., 2019. Sithylemenkat Lake (Sythylemenkat) USA, Alaska, The Complete Catalog of the Earth's Impact structures, ICM&MG SB RAS
  259. Cannon, P.J. (1977). "Meteorite impact crater discovered in central Alaska with Landsat imagery". Science 196 (4296): 1322–1324. doi:10.1126/science.196.4296.1322. PMID 17831748. Bibcode1977Sci...196.1322C. 
  260. Patton Jr, W.W., Miller, T.P. and Cannon, P.J., 1978. Meteorite impact crater in central Alaska. Science, 201(4352), pp. 279–279.
  261. Rajmon, D., 2012. David Rajmon Global Impact Crater GIS Project AAPG Datapages, Tulsa Oklahoma: American Association of Petroleum Geologists.
  262. Smerdyacheye
  263. L. L. Kashkarov, D. D. Badjukov, A. I. Ivliev, G. V. Kalinina, and M. A. Nazarov, Vernadsky (2005). The Smerdyacheye Lake: New Evidence For Impact Origin And Formation Age, Lunar and Planetary Science XXXVI
  264. Red Sea Hills
  265. G. Di Achille (2005). A New Candidate Impact Site In Northeastern Sudan Detected From Remote Sensing, Lunar and Planetary Science XXXVI
  266. Chabou M.Ch. (2016). AN UPDATED INVENTORY OF METEORITE IMPACT STRUCTURES IN THE ARAB WORLD // Conference: First ArabGU International Conference (AIC-1). February 17–18, 2016. At: FSTGAT-USTHB, Algiers, ALGERIA.
  267. Bayuda
  268. A. Sparavigna (2010) Crater-Like Landform in Bayuda Desert (A Processing of Satellite Images)
  269. Amelia Carolina Sparavigna (2010). "Craters and ring complexes of the North-East Sudanese country". arXiv:1008.3976 [physics.geo-ph].
  270. Svetloyar Lake
  271. V. Feldman, A. Kiselev (2008). Shock-melted impactites at the Svetloyar meteorite crater Volga area, Russia, Lunar and Planetary Science XXXIX
  272. Takamatsu
  273. Y. Miura (2007) Analyses Of Surface And Underground Data Of Takamatsu Crater In Japan. Lunar and Planetary Science XXXVIII
  274. Miura, Y.; Okamoto, M.; Fukuchi, T.; Sato, H.; Kono, Y.; Furumoto, M. (1995). "Takamatsu Crater Structure: Preliminary Report of Impact Crater in Active Orogenic Region". Lunar and Planetary Science Conference 26: 987. Bibcode1995LPI....26..987M. 
  275. Miura Y. (2002). Shocked quartz materials found in Japan. 18 General Meeting of the International Mineralogical Association "Mineralogy for the New Millennium", Edingurgh, 1–6 Sept., 2002, Edinburgh: IMA, p.105
  276. Miura Y., Hirota A. (2002). Impact-related glasses in Japan. Bull. liaison Soc. fr. mineral. et cristallogr., Vol. 14, No. 1, pp. 18–19
  277. Tarek
  278. Paillou, Philippe; Reynard, Bruno; Malézieux, Jean-Marie; Dejax, Jean; Heggy, Essam; Rochette, Pierre; Reimold, Wolf Uwe; Michel, Patrick et al. (2006). "An extended field of crater-shaped structures in the Gilf Kebir region, Egypt: Observations and hypotheses about their origin". Journal of African Earth Sciences 46 (3): 281–299. doi:10.1016/j.jafrearsci.2006.05.006. Bibcode2006JAfES..46..281P. https://www.researchgate.net/publication/223583325. 
  279. Roger Weller. Tarek crater
  280. Tatarsky North
  281. 281.0 281.1 B. W. Levin, S. A. Vishnevsky, and N. A. Palchik (2010). Underwater depressions on the bottom of the Tatarsky Strait, the Sea of Japan (western coast of the Sakhalin Island, Russia): possible marine impact craters, 41st Lunar and Planetary Science Conference
  282. Tatarsky South
  283. Tefé
  284. J. de Menezes, C. de Souza, F. Fortes, and C. Filho (1999). Geophysical Evidence Of A Possible Impact Structure At The K-T Boundary Of The Solimões Basin, Brazil , 6th International Congress of the Brazilian Geophysical Society
  285. Talundilly
  286. K. Bron (2015) The Tookoonooka-Talundilly tsunami sequence: constraining marine impact stratigraphy, Australian School of Petroleum, The University of Adelaide
  287. Gostin, V. A.; Therriault, A. M. (1997). "Tookoonooka, a large buried Early Cretaceous impact structure in the Eromanga Basin of southwestern Queensland, Australia". Meteoritics and Planetary Science 32 (4): 593–599. doi:10.1111/j.1945-5100.1997.tb01303.x. PMID 11540422. Bibcode1997M&PS...32..593G. 
  288. Temimichat
  289. Roger Weller. Temimichat crater
  290. Tsenkher
  291. G. Komatsu et al. (2015)The Tsenkher structure, Gobi-Altai, Mongolia: A probable impact crater with well-preserved rampart ejecta. 46th Lunar and Planetary Science Conference (2015)
  292. Khosbayar P., Ariunbileg Kh. (2000). Impact structure in Mongolia . The 31st International Geological Congress, Rio de Janeiro, Aug. 6–17, 2000, Rio de Janeiro: Geol. Surv. Braz, p. 6429
  293. Toms Canyon
  294. Glass B.P. (1987). Coesite associated with North American tektite debris in DSDP site 612 on the continental slope off NEW Jersey . Lunar and Planet. Sci. Houston (Tex.), s.a.. Vol. 18: 18th Conf., Houston Tex., March 16–20, 1987: Abstr. Pap., pp. 328–329
  295. Poag, C.Wylie; Poppe, Lawrence J. (1998). "The Toms Canyon structure, New Jersey outer continental shelf: A possible late Eocene impact crater". Marine Geology 145 (1–2): 23–60. doi:10.1016/S0025-3227(97)00113-8. Bibcode1998MGeol.145...23P. 
  296. doi:10.2110/jsr.2011.42
  297. Ust-Kara
  298. C. Koeberl (1990). The Kara/Ust-Kara twin impact structure. Geological Society of America, special paper.
  299. Vélingara
  300. S. Wade, M. Barbieri, J. Lichtenegger (2001) The Velingara Circular Structure ESA Bulletin June 2001
  301. Versailles
  302. Harris, James B.; Jones, Daniel R.; Street, R. L. (1991). "A Shallow Seismic Refraction Study of the Versailles Cryptoexplosion Structure, Central Kentucky". Meteoritics 26 (1): 47. doi:10.1111/j.1945-5100.1991.tb01014.x. Bibcode1991Metic..26...47H. 
  303. updated, Daisy Dobrijevic last (2021-10-29). "10 Earth impact craters you must see" (in en). https://www.space.com/10-earth-impact-craters-you-should-visit. 
  304. Vichada
  305. Victoria Island
  306. 306.0 306.1 Glikson, A.Y.; Meixner, A.J.; Radke, B.; Uysal, I.T.; Saygin, E.; Vickers, J.; Mernagh, T.P. (2015). "Geophysical anomalies and quartz deformation of the Warburton West structure, central Australia". Tectonophysics 643: 55–72. doi:10.1016/j.tecto.2014.12.010. 
  307. 307.0 307.1 Glikson, A.Y. and Pirajno, F., 2018. The World’s Largest Late to Post-Archaean Asteroid Impact Structures. In Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia (pp. 61-78). Springer, Cham.,
  308. 308.0 308.1 Stephen Luntz (2013). Huge Asteroid Impact Identified. Australasian Science
  309. Glikson, Andrew (2018). "Structure and origin of Australian ring and dome features with reference to the search for asteroid impact events". Tectonophysics 722: 175–196. doi:10.1016/j.tecto.2017.11.003. Bibcode2018Tectp.722..175G. 
  310. Dulin S. and Elmore R. D. 2008. Paleomagnetism of the Weaubleau structure, southwestern Missouri. In The sedimentary record of meteorite impacts. (pp. 55-64). Geological Society of America Special Paper No. 437.
  311. Evans, K.R., Mickus, K.L., Rovey II, C.W. and Davis, G.H., 2003. Field Trip I: The Weaubleau-Osceola Structure: Evidence of a Mississippian Meteorite Impact in Southwestern Missouri. Association of Missouri Geologists Field Trip Guidebook. 50th Annual Meeting Springfield, Missouri September 26–27, 2003, Missouri Department of Natural Resources, Rollo, MIssouri.
  312. Beauford, R.E., 2015. Physical records of impacts in the early and modern solar system. PhD thesis, University of Arkansas, Fayetteville, Arkansas, 174 p.
  313. Wembo-Nyama
  314. G. Monegato; M. Massironi; E. Martellato (2010). "The Ring Structure of Wembo-Nyama (Eastern Kasai, R.D. Congo): A Possible Impact Crater in Central Africa". Lunar and Planetary Science XLI (1533): 1601. Bibcode2010LPI....41.1601M. http://www.lpi.usra.edu/meetings/lpsc2010/pdf/1601.pdf. 
  315. "Ring may be giant 'impact crater'". BBC News. 2010-03-10. http://news.bbc.co.uk/2/hi/science/nature/8526093.stm. 
  316. Wilkes Land 2
  317. Woodbury
  318. E. F. Albin and R. S. Harris (2016). WOODBURY ASTROBLEME: FURTHER EVIDENCE FOR A LATE PROTEROZOIC IMPACT STRUCTURE IN WEST-CENTRAL GEORGIA, US, 47th Lunar and Planetary Science Conference
  319. Halford, Natalie; Barineau, Clinton (2019). "The Search for Impact Features in Proposed Target Rocks of the "Woodbury" Structure in the Pine Mountain Belt of Southwestern Georgia". Geological Society of America Abstracts with Programs 51 (3). doi:10.1130/abs/2019SE-327565. https://gsa.confex.com/gsa/2019SE/webprogram/Paper327565.html. 
  320. Miller, Jeremy; Barineau, Clinton (2016). "A Case of Mistaken Identity: The "Woodbury" Structure of South Central Georgia". Geological Society of America Abstracts with Programs 48 (7). doi:10.1130/abs/2016AM-285522. https://gsa.confex.com/gsa/2016AM/webprogram/Paper285522.html. 
  321. Yallalie
  322. Dentith, M.; Bevan, A.; Backhouse, J.; Featherstone, W.; Koeberl, C. (1999). "Yallalie: a Buried Structure of Possible Impact Origin in the Perth Basin, Western Australia". Geological Magazine 136 (6): 619–632. doi:10.1017/s0016756899003386. Bibcode1999GeoM..136..619D. http://espace.library.curtin.edu.au/R/?func=dbin-jump-full&object_id=146448&local_base=GEN01-ERA02. 
  323. Grant, B. The Yallalie Impact Structure.
  324. Dodson, J.R.; Ramrath, A. (2001). "An Upper Pliocene lacustrine environmental record from south-Western Australia — preliminary results". Palaeogeography, Palaeoclimatology, Palaeoecology 167 (3–4): 309–320. doi:10.1016/S0031-0182(00)00244-3. Bibcode2001PPP...167..309D. 
  325. Dodson, J.; MacPhail, M. K. (2004). "Palynological evidence for aridity events and vegetation change during the Middle Pliocene, a warm period in Southwestern Australia". Global and Planetary Change 41 (3–4): 285–307. doi:10.1016/j.gloplacha.2004.01.013. Bibcode2004GPC....41..285D. 
  326. 326.0 326.1 Zerelia East & West
  327. 327.0 327.1 Dietrich, V. J; Lagios, E; Reusser, E; Sakkas, V; Gartzos, E; Kyriakopoulos, K (2013). "The enigmatic Zerelia twin-lakes (Thessaly, Central Greece): two potential meteorite impact Craters". Solid Earth Discussions 5 (2): 1511–1573. doi:10.5194/sed-5-1511-2013. Bibcode2013SolED...5.1511D. 
  328. Whitehouse, David (2003-06-23). "Space impact 'saved Christianity'". BBC News. British Broadcasting Corporation. http://news.bbc.co.uk/2/hi/science/nature/3013146.stm. 
  329. Sandra Blakeslee (2006). Ancient Crash, Epic Wave
  330. Master, S. (2002) Umm al Binni lake, a possible Holocene impact structure in the marshes of southern Iraq. In: Leroy, S. and Stewart, I.S. (Eds.), Environmental Catastrophes and Recovery in the Holocene, Abstracts Volume, Brunel University, UK, 29 August – 2 September 2002, pp. 56–57
  331. R. V. Karanth, P. Thakker, and M. Gadhavi 2006. A preliminary report on the possible impact crater of Kachchh , Current Science, vol. 91, no. 7, October 2006
  332. Kjær, Kurt H. (November 2018). "A large impact crater beneath Hiawatha Glacier in northwest Greenland". Science Advances 4 (11): eaar8173. doi:10.1126/sciadv.aar8173. PMID 30443592. Bibcode2018SciA....4.8173K. 
  333. 333.0 333.1 Voosen, Paul (14 November 2018). "Massive crater under Greenland's ice points to climate-altering impact in the time of humans". Science. https://www.science.org/content/article/massive-crater-under-greenland-s-ice-points-climate-altering-impact-time-humans. 
  334. Boslough, Mark (March 2019). "Crater Discovery Story Flawed by Premature Link to Speculative Impact Hypothesis". Skeptical Inquirer 43 (2): 6–7. 
  335. Holliday, Vance T.; Daulton, Tyrone L.; Bartlein, Patrick J.; Boslough, Mark B.; Breslawski, Ryan P.; Fisher, Abigail E.; Jorgeson, Ian A.; Scott, Andrew C. et al. (2023-07-26). "Comprehensive refutation of the Younger Dryas Impact Hypothesis (YDIH)" (in en). Earth-Science Reviews 247: 104502. doi:10.1016/j.earscirev.2023.104502. 
  336. Copenhagen, University of (9 March 2022). "Giant impact crater in Greenland occurred a few million years after dinosaurs went extinct" (in en). https://phys.org/news/2022-03-giant-impact-crater-greenland-million.html. 
  337. Stevens, G; Spooner, I; Morrow, J; Pufahl, P; Raeside, R; Grieve, RAF; Stanley, CR; Barr, SM et al. (2008). "Physical evidence of a late-glacial (Younger Dryas?) impact event in southwestern Nova Scotia". Atlantic Geology 44: 42. 
  338. Goff, James (2010). "Analysis of the Mahuika comet impact tsunami hypothesis". Marine Geology 271 (3/4): 292–296. doi:10.1016/j.margeo.2010.02.020. Bibcode2010MGeol.271..292G. 
  339. Bourgeois, Joanne; Weiss, Robert (2009). "'Chevrons' are not mega-tsunami deposits – A sedimentologic assessment". Geology 37 (5): 403–406. doi:10.1130/G25246A.1. Bibcode2009Geo....37..403B. http://faculty.washington.edu/jbourgeo/BourgeoisWeiss2009final.pdf. 
  340. Pinter, Nicholas; Ishman, Scott E. (2008). "Impacts, mega-tsunami, and other extraordinary claims". GSA Today 18: 37. doi:10.1130/GSAT01801GW.1. 
  341. Povenmire H., Liu W. and Xianlin I. (1999) "Australasian tektites found in Guangxi Province, China", 30th Annual Lunar and Planetary Science Conference, Houston, March 1999.
  342. 342.0 342.1 Glass, B. P.; Pizzuto, J. E. (1994). "Geographic variation in Australasian microtektite concentrations: Implications concerning the location and size of the source crater". Journal of Geophysical Research 99 (E9): 19075. doi:10.1029/94JE01866. Bibcode1994JGR....9919075G. 
  343. Hartung, Jack; Koeberl, Christian (1994). "In search of the Australasian tektite source crater: The Tonle Sap hypothesis". Meteoritics 29 (3): 411–416. doi:10.1111/j.1945-5100.1994.tb00606.x. Bibcode1994Metic..29..411H. 
  344. Vastag, Brian (18 February 2013). "Crater found in Iowa points to asteroid break-up 470 million years ago". Washington Post. https://www.washingtonpost.com/national/health-science/crater-found-in-iowa-points-to-asteroid-break-up-470-million-years-ago/2013/02/18/545131f8-76d5-11e2-aa12-e6cf1d31106b_story.html?wprss=rss_national. 
  345. Ernstson, K.; Claudin, F.; Schüssler, U.; Hradil, K. (2002). "The mid-Tertiary Azuara and Rubielos de la Cérida paired impact structures (Spain)". Treb. Mus. Geol. Barcelona 11: 5–65. http://www.impact-structures.com/pdfall.pdf. 
  346. World's largest asteroid impact zone found in Australia: Meteorite broke in two, leaving two craters each 200 km across. Mar 24, 2015
  347. Magnetic anomaly map, Sudbury, Ontario and Quebec. Natural Resources Canada
  348. Rocca, M.; Presser, J. (2015). "A possible new very large impact structure in Malvinas Islands". Historia Natural, Tercera Series 5 (2). https://www.researchgate.net/publication/283123311. 
  349. L. Antoine, W. Reimold, and A. Tessema (1999) The Bangui Magnetic Anomaly Revisited, 62nd Annual Meteoritical Society Meeting
  350. Howard Falcon-Lang (2010). Double space strike 'caused dinosaur extinction', BBC News
  351. Jolley, D.; Gilmour, I.; Gurov, E.; Kelley, S.; Watson, J. (2010). "Two large meteorite impacts at the Cretaceous-Paleogene boundary". Geology 38 (9): 835–838. doi:10.1130/G31034.1. Bibcode2010Geo....38..835J. http://oro.open.ac.uk/22382/1/Jolley_et_al_2010.pdf. 
  352. Becker L., Shukolyukov A., Macassic C., Lugmair G. & Poreda R. 2006. Extraterrestrial Chromium at the Graphite Peak P/Tr boundary and in the Bedout Impact Melt Breccia. Lunar and Planetary Science XXXVII (2006), abstract # 2321.PDF
  353. Gorder, Pam Frost (June 1, 2006). "Big Bang in Antarctica – Killer Crater Found Under Ice". Ohio State University Research News. http://researchnews.osu.edu/archive/erthboom.htm. 
  354. Hodych, J.P.; G.R.Dunning (1992). "Did the Manicouagan impact trigger end-of-Triassic mass extinction?". Geology 20 (1): 51.54. doi:10.1130/0091-7613(1992)020<0051:DTMITE>2.3.CO;2. Bibcode1992Geo....20...51H. 
  355. Schultz, P. H.; Harris, R. S.; Perroud, S.; Blanco, N.; Tomlinson, S. (2022). "Widespread glasses generated by cometary fireballs during the late Pleistocene in the Atacama Desert, Chile". Geology 50 (2): 205. doi:10.1130/G49426.1. Bibcode2022Geo....50..205S. 
  356. Cavosie, A.J.; Koeberl, C. (2019). "Overestimation of threat from 100 Mt–class airbursts? High-pressure evidence from zircon in Libyan Desert Glass". Geology 47 (7): 609–612. doi:10.1130/G45974.1. Bibcode2019Geo....47..609C. 
  357. Koeberl, C.; Ferrière, L. (2019). "Libyan Desert Glass area in western Egypt: Shocked quartz in bedrock points to a possible deeply eroded impact structure in the region". Meteoritics & Planetary Science 54 (10): 2398–2408. doi:10.1111/maps.13250. Bibcode2019M&PS...54.2398K. 
  358. Sighinolfi, G.P.; Lugli, F.; Piccione, F.; Michele, V.D.; Cipriani, A. (2020). "Terrestrial target and melting site of Libyan Desert Glass: New evidence from trace elements and Sr isotopes". Meteoritics & Planetary Science 55 (8): 1865–1883. doi:10.1111/maps.13550. Bibcode2020M&PS...55.1865S. 
  359. Sestov, V.; Shuvalov, V.; Kosarev, I. (2020). "Formation of Libyan Desert Glass: Numerical simulations of melting of silica due to radiation from near-surface airbursts". Meteoritics & Planetary Science 55 (4): 895–910. doi:10.1111/maps.13470. Bibcode2020M&PS...55..895S. 
  360. Haldemann, A. F. C.; Kleindienst, M. R.; Churcher, C. S.; Smith, J. R.; Schwarcz, H. P.; Markham, K.; Osinski, G. (August 2005). "Mapping Impact Modified Sediments: Subtle Remote-Sensing Signatures of the Dakhleh Oasis Catastrophic Event, Western Desert, Egypt". Bulletin of the American Astronomical Society 37: 648. Bibcode2005DPS....37.1703H. 
  361. G. Osinski, A. Haldemann, et al. (2007). Impact Glass At The Dakhleh Oasis, Egypt: Evidence For A Cratering Event Or Large Aerial Burst?, Lunar and Planetary Science XXXVIII
  362. Schulz, P.H.; Zárate, M.; Hames, B.; Harris, R.S.; Bunch, T.; Koeberl, C.; Renne, P.; Wittke, J. (2006). "The record of Miocene impacts in the Argentine Pampas". Meteoritics & Planetary Science 41 (5): 749–771. doi:10.1111/j.1945-5100.2006.tb00990.x. Bibcode2006M&PS...41..749S. https://ri.conicet.gov.ar/handle/11336/81867. 
  363. Povenmire, H.; Burrer, B.; Cornec, J.H.; Harris, R.S. (2012). "The New Central American Tektite Strewn Field Update". 43rd Lunar and Planetary Science Conference, Houston, Texas. Abstract No. 1260. http://www.lpi.usra.edu/meetings/lpsc2012/pdf/1260.pdf. 
  364. Schwarz, W.H.; Trieloff, M.; Bollinger, K.; Gantert, N.; Fernandes, V.A.; Meyer, H.P.; Povenmire, H.; Jessberger, E.K. et al. (2016). "Coeval ages of Australasian, Central American and Western Canadian tektites reveal multiple impacts 790 ka ago". Geochimica et Cosmochimica Acta 178: 307–319. doi:10.1016/j.gca.2015.12.037. Bibcode2016GeCoA.178..307S. 
  365. Koeberl, C.; Glass, B.P.; Schulz, T.; Wegner, W.; Giuli, G.; Cicconi, M.R.; Trapananti, A.; Stabile, P. et al. (2022). "Tektite glasses from Belize, Central America: Petrography, geochemistry, and search for a possible meteoritic component". Geochimica et Cosmochimica Acta 325: 232–257. doi:10.1016/j.gca.2022.02.021. Bibcode2022GeCoA.325..232K. 
  366. Drake, Simon M.; Beard, Andrew D.; Jones, Adrian P.; Brown, David J.; Fortes, A. Dominic; Millar, Ian L.; Carter, Andrew; Baca, Jergus et al. (2017). "Discovery of a meteoritic ejecta layer containing unmelted impactor fragments at the base of Paleocene lavas, Isle of Skye, Scotland". Geology 46 (2): 171. doi:10.1130/g39452.1. Bibcode2018Geo....46..171D. 
  367. Simms, Michael J. (December 2015). "The Stac Fada impact ejecta deposit and the Lairg Gravity Low: evidence for a buried Precambrian impact crater in Scotland?". Proceedings of the Geologists' Association 126 (6): 742–761. doi:10.1016/j.pgeola.2015.08.010. https://www.researchgate.net/publication/282570971. Retrieved 5 April 2017. 
  368. Kenny, G.G.; O’Sullivan, G.J.; Alexander, S.; Simms, M.J.; Chew, D.M.; Kamber, B.S. (2019). "On the track of a Scottish impact structure: a detrital zircon and apatite provenance study of the Stac Fada Member and wider Stoer Group, NW Scotland". Geological Magazine 156 (11): 1863–1876. doi:10.1017/S0016756819000220. Bibcode2019GeoM..156.1863K. https://eprints.qut.edu.au/197844/8/on_the_track_of_a_scottish_impact_structure_a_detrital_zircon_and_apatite_provenance_study_of_the_stac_fada_member_and_wider_stoer_group_nw_scotland.pdf. 
  369. Osinski, G.R.; Ferrière, L.; Hill, P.J.A.; Pave, A.R.; Preston, L.J.; Singleton, A.; Pickersgill, A.E. (2014). "The Mesoproterozoic Stac Fada Member, NW Scotland: an impact origin confirmed but refined". Journal of the Geological Society 178 (9): no. jgs2020-056. 
  370. Sleep, N.H.; Lowe, D.R. (2004). "Physics of crustal fracturing and chert dike formation triggered by asteroid impact, ~3.26 Ga, Barberton greenstone belt, South Africa". Geochemistry, Geophysics, Geosystems 159 (4): 1045–1070. 
  371. Lowe, D.R.; Byerly, G.R.; Kyte, F.T. (2014). "Recently discovered 3.42–3.23 Ga impact layers, Barberton Belt, South Africa: 3.8 Ga detrital zircons, Archean impact history, and tectonic implications". Geology 42 (9): 747–750. doi:10.1130/G35743.1. Bibcode2014Geo....42..747L. 
  372. Glikson, A.; Hickman, A.; Evans, N.J.; Kirkland, C.L.; Park, J.W.; Rapp, RS.; Romanon, S. (2016). "A new ~3.46 Ga asteroid impact ejecta unit at Marble Bar, Pilbara Craton, Western Australia: A petrological, microprobe and laser ablation ICPMS study". Precambrian Research 279: 103–122. doi:10.1016/j.precamres.2016.04.003. Bibcode2016PreR..279..103G. 
  373. Weidinger JT, Korup O (2008). "Frictionite as evidence for a large Late Quaternary rockslide near Kanchenjunga, Sikkim Himalayas, India – Implications for extreme events in mountain relief destruction". Geomorphology 103 (1): 57–65. doi:10.1016/j.geomorph.2007.10.021. Bibcode2009Geomo.103...57W. 
  374. Mika McKinnon (2015). This Is Not A Crater, So What Is It? at space.gizmodo.com
  375. Dietz, R.S.; Fudali, R.; Cassidy, W. (1969). "Richat and Semsiyat Domes (Mauritania): Not Astroblemes". Geological Society of America 80 (7): 1367–1372. doi:10.1130/0016-7606(1969)80[1367:rasdmn2.0.co;2]. Bibcode1969GSAB...80.1367D. http://gsabulletin.gsapubs.org/content/80/7/1367.short. 

Bibliography

External links

Map all coordinates using: OpenStreetMap 
Download coordinates as: KML · GPX




Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Earth:List_of_possible_impact_structures_on_Earth
1 | Status: cached on August 06 2024 23:42:54
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF