This is a compilation of the properties of different analog materials used to simulate deformational processes in structural geology. Such experiments are often called analog or analogue models. The organization of this page follows the review of rock analog materials in structural geology and tectonics of Reber et al. 2020.[1]
Bot, vanAmerongon, Groot, Hoekstra, & Agterof, 1996;[21] Brizzi, Funiciello, Corbi, Di Giuseppe, & Mojoli, 2016;[22] Canon-Tapia and Merle, 2006;[14] Corbi et al., 2011;[12] Corbi et al., 2013;[13] Di Giuseppe et al., 2009;[23] Hyndman & Alt, 1987;[15] Kavanagh, Menand, & Daniels, 2013;[24] Kavanagh, Menand, & Sparks, 2006;[16] Kervyn, Ernst, de Vires, Mathieu, & Jacobs, 2009;[17] Kobchenko et al., 2014;[9] Lee, Reber, Hayman, & Wheeler, 2016;[10] Menand & Tait, 2002;[18] Pollard, 1973;[19] Rivalta, Bottinger, & Dahm, 2005;[20] Touvet, Balmforth, Craster, & Sutherland, 2011;[11] van Otterloo & Cruden, 2016[25]
Foam
Foam is mostly used as an analog simulating elastic loading on the crust between earthquake events.[26][27][28][29] If the foam used has a low stiffness, it can be dynamically scaled to preexisting fault surfaces' and earthquake cycles[30]
Anooshehpoor & Brune,1999;[26] Anooshehpoor, Heaton, Shi & Brune, 1999;[27] Brune,1973;[28] Caniven et al., 2015;[29] Rosenau et al., 2017;[30] Rosenau, Lohrmann, & Oncken, 2009;[31] Rosenau & Oncken, 2009[32]
Clay is used to simulate deformation in the upper crust through distributed deformation and localized failure. The properties of clay depend on the mineralogy, grain size distribution and water content.
Bonanno, et al., 2017;[33] Bonini et al., 2016;[34] Cooke and van der Elst, 2012;[35] DeGroot & Lunne, 2007;[36] Eisenstadt & Sims, 2005;[37] Hatem, Cooke, & Toeneboehn, 2017;[38] Henza, Withjack, & Schlische, 2010;[39] Kenny, 1967;[40] Mitra & Paul, 2011;[41] Paul & Mitra, 2013;[42] Toeneboehn, 2017;[43] Toeneboehn, 2018;[44] White, 1949;[45] Withjack, Henza, & Schlische, 2017[46]
Dry granular materials
This is a picture of white plastic beads used as a material in analog experiments.
Material
Applications
Studies
Sand
During deformation, sand exhibits distributed deformation, compaction followed by dilatation, prior to failure via grain rearrangement. Sand is often used to simulate folding or faulting.[47]
Sand-hemihydrate calcium sulphate mixtures, in different mixing ratios, are used as an "ultra-weak" sandstone to simulate fault and fracture processes in analogue modelling at the outcrop scale (about 10 m).
Massaro et al., 2022;[71] Massaro et al., 2023[72]
Materials used to simulate deformation of the lower crust and mantle
This is a sample of silicone that is used in analog modelling experiments.
Various fluids are used to simulate deformation of the lower crust and mantle, such as: linear, non-linear, and yield stress fluids.
Fluid type
Material
Application
Studies
Linear viscous fluids
Silicone Oils/Polymers
Silicone oils/polymers can have varying viscosities, which can be changed by adding fillers (dry granular materials) or aolic acid.
In combination with brittle model materials, silicone oils/polymers can investigate many processes in salt tectonics, including the deformation of sediments adjacent and above a salt body.
Honey, glucose syrup, and molasses exhibit strain independent deformation. The viscosity depends on the sugar content and temperature of the material. This makes them suitable to simulate the lower crust and mantle.
*Honey can also be used as a non-linear viscous fluid under certain conditions.
Paraffin wax can be used in analog experiments as a linear or non-linear yield stress fluid. By mixing paraffin wax with petrolatum, the yield stress, shear thinning, and shear softening behavior can be modified.
Balmforth & Rust, 2009;[94] Birren & Reber, 2019;[97] Davaille et al., 2013;[96] Di Federico et al., 2017;[93] Reber et al., 2015;[98] Schrank, Boutelier, & Cruden, 2008[95]
Materials used to simulate deformation of the middle crust
Composite Model Materials
The material photographed above is polyurethane discs. The left side of image shows the discs under normal light. The right side of the image what can be observed when a polarizer is placed above the discs.
Composite materials combine phases with different physical properties. A common composite mixture contains dry granular materials and fluids. These analog materials have been used:
Sediment transport (Parker et al., 1982[99]) using low viscosity fluids
Dynamics in the middle crust (Mookerjee et al., 2017;[100] Reber et al., 2014[101]) employing high viscosity fluids
Stick-slip dynamics (Higashi and Sumita, 2009;[102] Reber et al., 2014[101])
Strain softening and hardening processes (Panien et al., 2006[57])
The most commonly used granular materials in composite mixtures are:
Sand
Glass beads
Acrylic discs
A sample of carbopol. It is a clear, gel-like substance that is commonly used in modeling experiments.
A micro-photograph of the modeling material carbopol.
Common fluids used in composite mixtures are:
Carbopol
Silicone
Wax, which can behave as a brittle or viscous material depending on the melting temperature (Mookerjee et al., 2017[100])
Visco-elasto-plastic model materials
Visco-elasto-plastic deformation exhibits a combination of elastic, viscous, and plastic deformation at the same time. Various asphalts and bituminous materials demonstrate visco-elasto-plastic deformation but they are rarely as modeling materials (McBirney and Best, 1961[103]).Common modeling materials demonstrating complex rheology are;
Carbopol (Piau, 2007;[104] Shafiei et al., 2018[105])
↑Reber, Jacqueline E.; Cooke, Michele L.; Dooley, Tim P. (March 2020). "What model material to use? A Review on rock analogs for structural geology and tectonics". Earth-Science Reviews202: 103107. doi:10.1016/j.earscirev.2020.103107. Bibcode: 2020ESRv..20203107R.
↑ 4.04.1Erdogan, F.; Sih, G. C. (1 December 1963). "On the Crack Extension in Plates Under Plane Loading and Transverse Shear". Journal of Basic Engineering85 (4): 519–525. doi:10.1115/1.3656897.
↑ 5.05.1Thomas, Andrew L.; Pollard, David D. (March 1993). "The geometry of echelon fractures in rock: implications from laboratory and numerical experiments". Journal of Structural Geology15 (3–5): 323–334. doi:10.1016/0191-8141(93)90129-X. Bibcode: 1993JSG....15..323T.
↑ 6.06.1Cooke, Michele L.; Pollard, David D. (1996-02-10). "Fracture propagation paths under mixed mode loading within rectangular blocks of polymethyl methacrylate". Journal of Geophysical Research: Solid Earth101 (B2): 3387–3400. doi:10.1029/95JB02507. Bibcode: 1996JGR...101.3387C.
↑ 8.08.1Rubino, V.; Rosakis, A. J.; Lapusta, N. (June 2019). "Full-field Ultrahigh-speed Quantification of Dynamic Shear Ruptures Using Digital Image Correlation". Experimental Mechanics59 (5): 551–582. doi:10.1007/s11340-019-00501-7. ISSN0014-4851.
↑ 9.09.1Kobchenko, Maya; Hafver, Andreas; Jettestuen, Espen; Renard, François; Galland, Olivier; Jamtveit, Bjørn; Meakin, Paul; Dysthe, Dag Kristian (2014-11-04). "Evolution of a fracture network in an elastic medium with internal fluid generation and expulsion". Physical Review E90 (5): 052801. doi:10.1103/PhysRevE.90.052801. ISSN1539-3755. PMID25493828. Bibcode: 2014PhRvE..90e2801K.
↑ 10.010.1Lee, Sanghyun; Reber, Jacqueline E.; Hayman, Nicholas W.; Wheeler, Mary F. (2016-08-16). "Investigation of wing crack formation with a combined phase-field and experimental approach: WING CRACK WITH PHASE FIELD". Geophysical Research Letters43 (15): 7946–7952. doi:10.1002/2016GL069979.
↑ 12.012.1Corbi, F.; Funiciello, F.; Faccenna, C.; Ranalli, G.; Heuret, A. (2011-06-17). "Seismic variability of subduction thrust faults: Insights from laboratory models". Journal of Geophysical Research116 (B6): B06304. doi:10.1029/2010JB007993. ISSN0148-0227. Bibcode: 2011JGRB..116.6304C.
↑ 13.013.1Corbi, F.; Funiciello, F.; Moroni, M.; van Dinther, Y.; Mai, P. M.; Dalguer, L. A.; Faccenna, C. (April 2013). "The seismic cycle at subduction thrusts: 1. Insights from laboratory models: SUBDUCTION SEISMIC CYCLE SIMULATIONS: 1". Journal of Geophysical Research: Solid Earth118 (4): 1483–1501. doi:10.1029/2012JB009481.
↑ 14.014.1Cañón-Tapia, E.; Merle, O. (November 2006). "Dyke nucleation and early growth from pressurized magma chambers: Insights from analogue models". Journal of Volcanology and Geothermal Research158 (3–4): 207–220. doi:10.1016/j.jvolgeores.2006.05.003. Bibcode: 2006JVGR..158..207C.
↑ 16.016.1Kavanagh, Janine L.; Menand, Thierry; Sparks, R. Stephen J. (May 2006). "An experimental investigation of sill formation and propagation in layered elastic media". Earth and Planetary Science Letters245 (3–4): 799–813. doi:10.1016/j.epsl.2006.03.025. Bibcode: 2006E&PSL.245..799K.
↑Bot, Arjen; van Amerongen, Ivo A.; Groot, Robert D.; Hoekstra, Niko L.; Agterof, Wim G.M. (January 1996). "Large deformation rheology of gelatin gels". Polymer Gels and Networks4 (3): 189–227. doi:10.1016/0966-7822(96)00011-1.
↑Brizzi, S.; Funiciello, F.; Corbi, F.; Di Giuseppe, E.; Mojoli, G. (June 2016). "Salt matters: How salt affects the rheological and physical properties of gelatine for analogue modelling". Tectonophysics679: 88–101. doi:10.1016/j.tecto.2016.04.021. Bibcode: 2016Tectp.679...88B.
↑Di Giuseppe, E.; Funiciello, F.; Corbi, F.; Ranalli, G.; Mojoli, G. (August 2009). "Gelatins as rock analogs: A systematic study of their rheological and physical properties". Tectonophysics473 (3–4): 391–403. doi:10.1016/j.tecto.2009.03.012. Bibcode: 2009Tectp.473..391D.
↑van Otterloo, Jozua; Cruden, Alexander R. (June 2016). "Rheology of pig skin gelatine: Defining the elastic domain and its thermal and mechanical properties for geological analogue experiment applications". Tectonophysics683: 86–97. doi:10.1016/j.tecto.2016.06.019. Bibcode: 2016Tectp.683...86V.
↑ 26.026.1Anooshehpoor, Abdolrasool; Brune, James N. (1999-07-01). "Wrinkle-like Weertman pulse at the interface between two blocks of foam rubber with different velocities". Geophysical Research Letters26 (13): 2025–2028. doi:10.1029/1999GL900397. Bibcode: 1999GeoRL..26.2025A.
↑ 27.027.1Anooshehpoor, A., Heaton, T. H., Shi, B. P., & Brune, J. N. (1999). Estimates of the ground accelerations at Point Reyes Station during the 1906 San Francisco earthquake. Bulletin of the Seismological Society of America, 89(4), 845-853.
↑ 28.028.1Brune, J. N. (1973). Earthquake modeling by stick-slip along precut surfaces in stressed foam rubber Bulletin of the Seismological Society of America, 63(6), 2105-2119.
↑ 29.029.1Caniven, Y.; Dominguez, S.; Soliva, R.; Cattin, R.; Peyret, M.; Marchandon, M.; Romano, C.; Strak, V. (2015). "A new multilayered visco-elasto-plastic experimental model to study strike-slip fault seismic cycle: An analog model of earthquake cycle". Tectonics34 (2): 232–264. doi:10.1002/2014TC003701.
↑ 31.031.131.231.331.4Rosenau, Matthias; Lohrmann, Jo; Oncken, Onno (January 2009). "Shocks in a box: An analogue model of subduction earthquake cycles with application to seismotectonic forearc evolution: SUBDUCTION EARTHQUAKE MODEL". Journal of Geophysical Research: Solid Earth114 (B1). doi:10.1029/2008JB005665.
↑Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Burrato, Pierfrancesco; Seno, Silvio; Valensise, Gianluca (August 2016). "The effects of pre-existing discontinuities on the surface expression of normal faults: Insights from wet-clay analog modeling". Tectonophysics684: 157–175. doi:10.1016/j.tecto.2015.12.015. Bibcode: 2016Tectp.684..157B.
↑ 35.035.1Cooke, Michele L.; van der Elst, Nicholas J. (2012). "Rheologic testing of wet kaolin reveals frictional and bi-viscous behavior typical of crustal materials". Geophysical Research Letters39 (1): n/a. doi:10.1029/2011GL050186. Bibcode: 2012GeoRL..39.1308C.
↑DeGroot, D. J., & Lunne, T. (2007). Measurement of Remoulded Shear Strength. Norwegian Geotechnical Institute. Report, 20061021--20061023.
↑Eisenstadt, Gloria; Sims, Darrell (August 2005). "Evaluating sand and clay models: do rheological differences matter?". Journal of Structural Geology27 (8): 1399–1412. doi:10.1016/j.jsg.2005.04.010. Bibcode: 2005JSG....27.1399E.
↑Hatem, Alexandra E.; Cooke, Michele L.; Toeneboehn, Kevin (August 2017). "Strain localization and evolving kinematic efficiency of initiating strike-slip faults within wet kaolin experiments". Journal of Structural Geology101: 96–108. doi:10.1016/j.jsg.2017.06.011. Bibcode: 2017JSG...101...96H.
↑Henza, Alissa A.; Withjack, Martha O.; Schlische, Roy W. (November 2010). "Normal-fault development during two phases of non-coaxial extension: An experimental study". Journal of Structural Geology32 (11): 1656–1667. doi:10.1016/j.jsg.2009.07.007. Bibcode: 2010JSG....32.1656H.
↑Kenny, T. C. (1967). The influence of mineral composition on the residual strength of natural soils. TRID, 1, 123-129.
↑Mitra, Shankar; Paul, Debapriya (July 2011). "Structural geometry and evolution of releasing and restraining bends: Insights from laser-scanned experimental models". AAPG Bulletin95 (7): 1147–1180. doi:10.1306/09271010060. ISSN0149-1423. Bibcode: 2011BAAPG..95.1147M.
↑Toeneboehn, K., 2017, Exploring Long-term Fault Evolution in Obliquely Loaded Systems Using Tabletop Experiments and Digital Image Correlation Techniques [MS: University of Massachusetts Amherst].
↑Toeneboehn, Kevin; Cooke, Michele L.; Bemis, Sean P.; Fendick, Anne M. (2018-10-10). "Stereovision Combined With Particle Tracking Velocimetry Reveals Advection and Uplift Within a Restraining Bend Simulating the Denali Fault". Frontiers in Earth Science6: 152. doi:10.3389/feart.2018.00152. ISSN2296-6463. Bibcode: 2018FrEaS...6..152T.
↑White, A. W. (1949). Atterberg plastic limits of clay minerals. American Mineralogist: Journal of Earth and Planetary Materials, 34, 508-512.
↑Withjack, Martha Oliver; Henza, Alissa A.; Schlische, Roy W. (November 2017). "Three-dimensional fault geometries and interactions within experimental models of multiphase extension". AAPG Bulletin101 (11): 1767–1789. doi:10.1306/02071716090. ISSN0149-1423. Bibcode: 2017BAAPG.101.1767W.
↑Abdelmalak, M.M.; Bulois, C.; Mourgues, R.; Galland, O.; Legland, J.-B.; Gruber, C. (August 2016). "Description of new dry granular materials of variable cohesion and friction coefficient: Implications for laboratory modeling of the brittle crust". Tectonophysics684: 39–51. doi:10.1016/j.tecto.2016.03.003. Bibcode: 2016Tectp.684...39A.
↑Galland, Olivier; Cobbold, Peter R.; Hallot, Erwan; de Bremond d'Ars, Jean; Delavaud, Gatien (March 2006). "Use of vegetable oil and silica powder for scale modelling of magmatic intrusion in a deforming brittle crust". Earth and Planetary Science Letters243 (3–4): 786–804. doi:10.1016/j.epsl.2006.01.014. Bibcode: 2006E&PSL.243..786G.
↑Lohrmann, Jo; Kukowski, Nina; Adam, Jürgen; Oncken, Onno (2003). "The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges". Journal of Structural Geology25 (10): 1691–1711. doi:10.1016/S0191-8141(03)00005-1. Bibcode: 2003JSG....25.1691L.
↑ 57.057.1Panien, M.; Buiter, S. J. H.; Schreurs, G.; Pfiffner, O. A. (2006). "Inversion of a symmetric basin: insights from a comparison between analogue and numerical experiments". Geological Society, London, Special Publications253 (1): 253–270. doi:10.1144/gsl.sp.2006.253.01.13. ISSN0305-8719. Bibcode: 2006GSLSP.253..253P.
↑ 58.058.158.258.3Boutelier, D.; Schrank, C.; Cruden, A. (March 2008). "Power-law viscous materials for analogue experiments: New data on the rheology of highly-filled silicone polymers". Journal of Structural Geology30 (3): 341–353. doi:10.1016/j.jsg.2007.10.009. Bibcode: 2008JSG....30..341B.
↑ 59.059.1Rossi, David; Storti, Fabrizio (November 2003). "New artificial granular materials for analogue laboratory experiments: aluminium and siliceous microspheres". Journal of Structural Geology25 (11): 1893–1899. doi:10.1016/S0191-8141(03)00041-5. Bibcode: 2003JSG....25.1893R.
↑ 60.060.160.2Schellart, W.P. (September 2000). "Shear test results for cohesion and friction coefficients for different granular materials: scaling implications for their usage in analogue modelling". Tectonophysics324 (1–2): 1–16. doi:10.1016/S0040-1951(00)00111-6. Bibcode: 2000Tectp.324....1S.
↑ 62.062.162.2Dooley, Tim P.; Jackson, Martin P.A.; Hudec, Michael R. (June 2009). "Inflation and deflation of deeply buried salt stocks during lateral shortening". Journal of Structural Geology31 (6): 582–600. doi:10.1016/j.jsg.2009.03.013. Bibcode: 2009JSG....31..582D.
↑Hudec, Michael R.; Jackson, Martin P.A.; Schultz-Ela, Daniel D. (January 2009). "The paradox of minibasin subsidence into salt: Clues to the evolution of crustal basins". Geological Society of America Bulletin121 (1–2): 201–221. doi:10.1130/B26275.1. ISSN0016-7606.
↑Cruz, Leonardo; Teyssier, Christian; Perg, Lesley; Take, Andy; Fayon, Annia (January 2008). "Deformation, exhumation, and topography of experimental doubly-vergent orogenic wedges subjected to asymmetric erosion". Journal of Structural Geology30 (1): 98–115. doi:10.1016/j.jsg.2007.10.003. Bibcode: 2008JSG....30...98C.
↑Hoover, S.R; Cashman, K.V; Manga, M (June 2001). "The yield strength of subliquidus basalts — experimental results". Journal of Volcanology and Geothermal Research107 (1–3): 1–18. doi:10.1016/S0377-0273(00)00317-6. Bibcode: 2001JVGR..107....1H.
↑ 69.069.1Schellart, Wouter P.; Strak, Vincent (October 2016). "A review of analogue modelling of geodynamic processes: Approaches, scaling, materials and quantification, with an application to subduction experiments". Journal of Geodynamics100: 7–32. doi:10.1016/j.jog.2016.03.009. Bibcode: 2016JGeo..100....7S.
↑ 70.070.1Moore, Vernon M.; Vendeville, Bruno C.; Wiltschko, David V. (July 2005). "Effects of buoyancy and mechanical layering on collisional deformation of continental lithosphere: Results from physical modeling". Tectonophysics403 (1–4): 193–222. doi:10.1016/j.tecto.2005.04.004. Bibcode: 2005Tectp.403..193M.
↑Massaro, L.; Adam, J.; Jonade, E.; Yamada, Y. (November 2022). "New granular rock-analogue materials for simulation of multi-scale fault and fracture processes" (in en). Geological Magazine159 (11–12): 2036–2059. doi:10.1017/S0016756821001321. ISSN0016-7568.
↑Massaro, L.; Adam, J.; Yamada, Y. (2023-05-20). "Mechanical characterisation of new Sand-Hemihydrate rock-analogue material: Implications for modelling of brittle crust processes" (in en). Tectonophysics855: 229828. doi:10.1016/j.tecto.2023.229828. ISSN0040-1951.
↑ten Grotenhuis, Saskia M.; Piazolo, Sandra; Pakula, T.; Passchier, Cees W.; Bons, Paul D. (May 2002). "Are polymers suitable rock analogs?". Tectonophysics350 (1): 35–47. doi:10.1016/S0040-1951(02)00080-X. Bibcode: 2002Tectp.350...35T.
↑Cobbold, P. R., Szatmari, P., Demercian, L. S., Coelho, D., & Rossello, E. A. (1995). Seismic and experimental evidence for thin-skinned horizontal shortening by convergent radial gliding on evaporites, deep-water Santos Basin, Brazil (Vol. 65).
↑Dooley, Tim P.; Hudec, Michael R. (February 2017). "The effects of base-salt relief on salt flow and suprasalt deformation patterns — Part 2: Application to the eastern Gulf of Mexico". Interpretation5 (1): SD25–SD38. doi:10.1190/INT-2016-0088.1. ISSN2324-8858. Bibcode: 2017Int.....5D..25D.
↑Dooley, Tim P.; Jackson, Martin P. A.; Hudec, Michael R. (October 2013). "Coeval extension and shortening above and below salt canopies on an uplifted, continental margin: Application to the northern Gulf of Mexico". AAPG Bulletin97 (10): 1737–1764. doi:10.1306/03271312072. ISSN0149-1423. Bibcode: 2013BAAPG..97.1737D.
↑Dooley, T. P.; Jackson, M. P. A.; Hudec, M. R. (February 2015). "Breakout of squeezed stocks: dispersal of roof fragments, source of extrusive salt and interaction with regional thrust faults". Basin Research27 (1): 3–25. doi:10.1111/bre.12056. Bibcode: 2015BasR...27....3D.
↑Letouzey, J.; Colletta, B.; Vially, R.; Chermette, J. C. (1995). "Evolution of salt-related structures in compressional settings". Salt tectonics: a global perspective. AAPG Memoir. 65. pp. 41–60.
↑Smit, J.; Brun, J.-P.; Fort, X.; Cloetingh, S.; Ben-Avraham, Z. (March 2008). "Salt tectonics in pull-apart basins with application to the Dead Sea Basin". Tectonophysics449 (1–4): 1–16. doi:10.1016/j.tecto.2007.12.004. Bibcode: 2008Tectp.449....1S.
↑Schellart, W.P. (June 2011). "Rheology and density of glucose syrup and honey: Determining their suitability for usage in analogue and fluid dynamic models of geological processes". Journal of Structural Geology33 (6): 1079–1088. doi:10.1016/j.jsg.2011.03.013. Bibcode: 2011JSG....33.1079S.
↑Cobbold, P.R.; Jackson, M.P.A. (September 1992). "Gum rosin (colophony): A suitable material for thermomechanical modelling of the lithosphere". Tectonophysics210 (3–4): 255–271. doi:10.1016/0040-1951(92)90325-Z. Bibcode: 1992Tectp.210..255C.
↑Paola, Chris; Straub, Kyle; Mohrig, David; Reinhardt, Liam (December 2009). "The "unreasonable effectiveness" of stratigraphic and geomorphic experiments". Earth-Science Reviews97 (1–4): 1–43. doi:10.1016/j.earscirev.2009.05.003. Bibcode: 2009ESRv...97....1P.
↑Rudolf, Michael; Boutelier, David; Rosenau, Matthias; Schreurs, Guido; Oncken, Onno (August 2016). "Rheological benchmark of silicone oils used for analog modeling of short- and long-term lithospheric deformation". Tectonophysics684: 12–22. doi:10.1016/j.tecto.2015.11.028. Bibcode: 2016Tectp.684...12R.
↑ 89.089.1Duarte, João C.; Schellart, Wouter P.; Cruden, Alexander R. (June 2014). "Rheology of petrolatum–paraffin oil mixtures: Applications to analogue modelling of geological processes". Journal of Structural Geology63: 1–11. doi:10.1016/j.jsg.2014.02.004. Bibcode: 2014JSG....63....1D.
↑Rossetti, F., Ranalli, G., and Faccenna, C., 1999, Rheological properties of paraffin as an analogue material for viscous crustal deformation: Journal of Structural Geology, v. 21, no. 4, p. 413-417.
↑Neurath, C.; Smith, R.B. (January 1982). "The effect of material properties on growth rates of folding and boudinage: Experiments with wax models". Journal of Structural Geology4 (2): 215–229. doi:10.1016/0191-8141(82)90028-1. Bibcode: 1982JSG.....4..215N.
↑ 94.094.1Balmforth, Neil J.; Rust, Alison C. (May 2009). "Weakly nonlinear viscoplastic convection". Journal of Non-Newtonian Fluid Mechanics158 (1–3): 36–45. doi:10.1016/j.jnnfm.2008.07.012.
↑ 95.095.1Schrank, Christoph E.; Boutelier, David A.; Cruden, Alexander R. (February 2008). "The analogue shear zone: From rheology to associated geometry". Journal of Structural Geology30 (2): 177–193. doi:10.1016/j.jsg.2007.11.002. Bibcode: 2008JSG....30..177S.
↑ 96.096.1Davaille, Anne; Gueslin, Blandine; Massmeyer, Anna; Giuseppe, Erika Di (2013). "Thermal instabilities in a yield stress fluid: Existence and morphology". Journal of Non-Newtonian Fluid Mechanics193: 144–153. doi:10.1016/j.jnnfm.2012.10.008.
↑ 98.098.1Reber, Jacqueline E.; Lavier, Luc L.; Hayman, Nicholas W. (September 2015). "Experimental demonstration of a semi-brittle origin for crustal strain transients". Nature Geoscience8 (9): 712–715. doi:10.1038/ngeo2496. ISSN1752-0894. Bibcode: 2015NatGe...8..712R.
↑Parker, G., Dhamotharan, S., and Stefan, H., 1982, Model experiments on mobile, paved gravel bed streams Water Resources Research, v. 18, no. 5, p. 1395-1408.
↑ 100.0100.1Mookerjee, Matty; Kucker, Kyle; Swain, Taylor; Martin, Daniel; Paquette, Paige (February 2017). "Analog modeling of fault asperity kinematics using a modified squeeze-box design and wax media". Interpretation5 (1): SD67–SD80. doi:10.1190/INT-2016-0090.1. ISSN2324-8858. Bibcode: 2017Int.....5D..67M.
↑ 101.0101.1Reber, J. E., Hayman, N. W., & Lavier, L. L. (2014). Stick-slip and creep behavior in lubricated granular material: insights into the brittle-ductile transition. Geophysical Research Letters, 41, 3471-3477.
↑Piau, J.M. (June 2007). "Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges". Journal of Non-Newtonian Fluid Mechanics144 (1): 1–29. doi:10.1016/j.jnnfm.2007.02.011. ISSN0377-0257.
↑Shafiei, Mohammadreza; Balhoff, Matthew; Hayman, Nicholas W. (March 2018). "Chemical and microstructural controls on viscoplasticity in Carbopol hydrogel". Polymer139: 44–51. doi:10.1016/j.polymer.2018.01.080. ISSN0032-3861.
0.00
(0 votes)
Original source: https://en.wikipedia.org/wiki/Rock analogs for structural geology. Read more