Argos (satellite system)

From HandWiki - Reading time: 4 min

Short description: System for collecting electronic environmental data


An Argos Seabeacon buoy
ARGOS transceiver

Argos is a global satellite-based system that collects, processes, and disseminates (spreads, distributes) environmental data from fixed and mobile platforms around the world.[citation needed] The worldwide tracking and environmental monitoring system is the results from Franco-American cooperation. In addition to satellite data collection, the main feature of the Argos system is its to ability to geographically locate the data source from any location on Earth using the Doppler effect;[1] which refers to the apparent change in the wavelength due to relative motion between its source and observer. Argos is operated by CLS/Argos, based in Toulouse, France, and its United States subsidiary, CLS America.

History and utilization

Argos was established in 1978 and has provided data to environmental research and protection groups.[2] It is a component of many global research programs including the Tropical Ocean-Global Atmosphere program (TOGA), Tagging of Pacific Pelagics (TOPP), World Ocean Circulation Experiment (WOCE) and, Argo. There are 22,000 active transmitters (8,000 of which are used in animal tracking) in over 100 countries.

Since the late 1980s, Argos transmitters have been deployed on a large number of marine mammals and sea turtles, and it is used for tracking long-distance movements of both coastal and oceanic species.[3][4]

Argos was developed under a Memorandum of Understanding (MOU) between the Centre National d'Études Spatiales (CNES, France ), the National Aeronautics and Space Administration (NASA, United States ) and the National Oceanic and Atmospheric Administration (NOAA, United States).

The system utilizes both ground and satellite-based resources to accomplish its mission. These include:

Since June 2019, a new subsidiary named Kinéis has taken over operations and plans to launch a constellation of 16U CubeSats in 2022.[5]

Operating agencies

The Argos satellite-based system was set up by:

Recent partners in this international cooperative venture are:

Frequencies and data transfer

Most use of the Argos System makes use of one-way data transmission on 401.65 MHz using Argos 2. Each Argos platform features a unique 28-bit ID and the ability to transmit a short 3 to 31 byte message for each transmission. Each platform is restricted to a specified interval, such as every 60 seconds, allowing for a few hundred bytes total per satellite pass. This is enough to contain a couple elements of geographic coordinates or other sensor data. Argos 1 is no longer supported. In order to determine transmitter position using Doppler shift on a single satellite accurately, approximately 4-6 transmissions are required in succession during a satellite pass. Accuracy can vary between several hundred meters to several kilometers.

The Argos 3 system uses a downlink signal at 465.9875 MHz. However, due to ground-based alarm system interference issues in the United States,[6] the downlink was disabled on the NOAA-19 satellite.[7] Other newer satellites still transmit on this frequency. The downlink contains date and time, Argos System satellite ephemeris data, and the downlink portion of the two-way communication link.

Data collected from the Argos System is transmitted to the ground using two possible methods. If an Argos System ground receiving station is in view of the satellite while the transmitter is also in view, the data is transmitted and processed in near real time. If a ground station is not in view or operational, data is additionally transmitted from the satellite to one of several polar based ground stations. This introduces additional delay in receiving messages.

Satellite constellation

The Argos System is served by 7 polar orbiting satellites at an altitude of 850 km and completes a revolution around Earth approximately every 100 minutes. At a vantage point of 850 km, satellites cover approximately 5000 km2 of Earth. Each satellite was intended to be Sun-synchronous, with passes almost at the same solar time each day. Although, due to the age of some satellites, minor drifting does occur.

Due to the satellite constellations polar orbit, 100% of the Earth is covered by the Argos System. Since pass overlap increase with latitude, the number of daily passes over a transmitter also increase with latitude.[8]

Argos satellites in operation[9]
Satellite Name Launch Date Operational Status Abbreviation Downlink Enabled
NOAA-15 13 May 1998 Operational NK N/A
NOAA-18 20 May 2005 Operational NN N/A
NOAA-19 6 February 2009 Operational NP No[10]
METOP-B 17 November 2012 Operational MB No
METOP-C 7 November 2018 Operational MC Yes
SARAL 13 February 2013 Operational SA Yes
ANGELS 18 December 2019 Operational A1 Yes

See also

  • Data collection satellite
  • DORIS (satellite)
  • Transit (satellite), which also used Doppler navigation, but with satellite transmitters and ground-based receivers

References

  1. "Argos User's Manual". https://www.argos-system.org/manual/index.html#3-location/32_principle.htm. 
  2. Rebecca Morelle (7 June 2007). "Argos: Keeping track of the planet". http://news.bbc.co.uk/2/hi/science/nature/6701221.stm. 
  3. Robinson, Patrick W.; Costa, Daniel P.; Crocker, Daniel E.; Gallo-Reynoso, Juan Pablo; Champagne, Cory D.; Fowler, Melinda A.; Goetsch, Chandra; Goetz, Kimberly T. et al. (2012-05-15). "Foraging Behavior and Success of a Mesopelagic Predator in the Northeast Pacific Ocean: Insights from a Data-Rich Species, the Northern Elephant Seal" (in en). PLOS ONE 7 (5): e36728. doi:10.1371/journal.pone.0036728. ISSN 1932-6203. PMID 22615801. Bibcode2012PLoSO...736728R. 
  4. Bhanoo, Sindya N. (2012-05-21). "A Tidal Wave of Data on Elephant Seals" (in en-US). The New York Times. ISSN 0362-4331. https://www.nytimes.com/2012/05/22/science/seal-tagging-yields-huge-set-of-data-in-northeastern-pacific.html. 
  5. Henry, Caleb (17 June 2019). "Kinéis takes control of Argos system, finalizes successor constellation plans". SpaceNews. https://spacenews.com/kineis-takes-control-of-argos-system-finalizes-successor-constellation-plans/. 
  6. "AES Tells How ADS' Mesh Network Failed". Security Sales & Integration. 2016-11-22. https://www.securitysales.com/news/aes_tells_how_ads_mesh_network_failed/. 
  7. "Resolution 806 (WRC-15)". https://www.ntia.doc.gov/files/ntia/publications/ai_10_ntia_proposal_460-470_mhz_2013-12-13.pdf. 
  8. "How Argos works?". Argos System. http://www.argos-system.org/argos/how-argos-works/. 
  9. "Angels satellite operational from 13th October 2020" (in en-US). 2020-10-13. https://www.argos-system.org/angels-satellite-operational/. 
  10. Operations, US Department of Commerce; NOAA; National Environmental Satellite Data and Information Service; Office of Satellite and Product. "NOAA's Office of Satellite and Product Operations" (in EN-US). https://www.ospo.noaa.gov/Operations/POES/NOAA19/a_dcs.html. 

External links




Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Engineering:Argos_(satellite_system)
12 views | Status: cached on August 01 2024 21:28:00
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF