List of Intel CPU microarchitectures

From HandWiki - Reading time: 15 min

Short description: None

The following is a partial list of Intel CPU microarchitectures. The list is incomplete, additional details can be found in Intel's Tick–tock model, Process–architecture–optimization model and Template:Intel processor roadmap.

x86 microarchitectures

x86 microarchitectures
Year Micro-architecture Pipeline stages Max
clock
(MHz)
Process node
1978 8086 (8086, 8088) 02 05 3000 nm
1982 186 (80186, 80188) 02 025
1982 286 (80286) 03 025 1500 nm
1985 386 (80386) 06[1] 033
1989 486 (80486) 05 0100 1000 nm
1993 P5 (Pentium) 05 0200 800, 600, 350 nm
1995 P6 (Pentium Pro, Pentium II) 14 (17 with load & store/retire) 0450 500, 350, 250 nm
1997 P5 (Pentium MMX) 06 0233 350 nm
1999 P6 (Pentium III) 12 (15 with load & store/retire) 1400 250, 180, 130 nm
2000 NetBurst (Pentium 4)
(Willamette)
20 unified with branch prediction 2000 180 nm
2002 NetBurst (Pentium 4)
(Northwood, Gallatin)
3466 130 nm
2003 Pentium M (Banias, Dothan)
Enhanced Pentium M (Yonah)
10 (12 with fetch/retire) 2333 130, 90, 65 nm
2004 NetBurst (Pentium 4, Pentium D)
(Prescott)
31 unified with branch prediction 3800 90, 65 nm
2006 Intel Core 12 (14 with fetch/retire) 3000 65 nm
2007 Penryn (die shrink) 3333 45 nm
2008 Nehalem 20 unified (14 without miss prediction) 3600
Bonnell 16 (20 with prediction miss) 2100
2010 Westmere (die shrink) 20 unified (14 without miss prediction) 3866 32 nm
2011 Saltwell (die shrink) 16 (20 with prediction miss) 2130
Sandy Bridge 14 (16 with fetch/retire) 4000
2012 Ivy Bridge (die shrink) 4100 22 nm
2013 Silvermont 14–17 (16–19 with fetch/retire) 2670
Haswell 14 (16 with fetch/retire) 4400
2014 Broadwell (die shrink) 3700 14 nm
2015 Airmont (die shrink) 14–17 (16–19 with fetch/retire) 2640
Skylake 14 (16 with fetch/retire) 5200
2016 Goldmont 20 unified with branch prediction 2600
2017 Goldmont Plus 20 unified with branch prediction (?) 2800
2018 Palm Cove 14 (16 with fetch/retire) 3200 10 nm
2019 Sunny Cove 14–20 (misprediction) 4100
2020 Tremont 20 unified 3300
Willow Cove 14 unified 5300
2021 Cypress Cove 14 unified 5300 14 nm
Golden Cove 12 unified 5500 Intel 7
Gracemont 20 unified with misprediction penalty 4300
2022 Raptor Cove 12 unified 6000
2023 Redwood Cove Intel 4
Crestmont
Note: Atom/Power efficient microarchitectures are in Italic

16-bit

8086
first x86 processor; initially a temporary substitute for the iAPX 432 to compete with Motorola, Zilog, and National Semiconductor and to top the successful Z80. 8088 version, with an 8-bit bus, used in the original IBM Personal Computer.
186
included a DMA controller, interrupt controller, timers, and chip select logic. A small number of additional instructions. The 80188 was a version with an 8-bit bus.
286
first x86 processor with protected mode including segmentation based virtual memory management. Performance improved by a factor of 3 to 4 over 8086. Included instructions relating to protected mode.

32-bit (IA-32)

i386
first 32-bit x86 processor. Introduced paging on top of segmentation which is the most commonly used memory protection technology in modern operating systems ever since. Many additional powerful and valuable new instructions.
i486
Intel's second generation of 32-bit x86 processors, introduced built-in floating point unit (FPU), 8 KB on-chip L1 cache, and pipelining. Faster per MHz than the 386. Small number of new instructions.
P5
original Pentium microprocessors, first x86 processor with super-scalar architecture and branch prediction.
P6
used in Pentium Pro, Pentium II, Pentium II Xeon, Pentium III, and Pentium III Xeon microprocessors. First x86 processor to support SIMD instruction with XMM register implemented, RISC μop decode scheme, integrated register renaming and out-of-order execution. Some important new instructions, including conditional moves, which allow the avoidance of costly branch instructions. Added 36-bit physical memory addressing, "Physical Address Extension (PAE)".
  • Pentium M: updated version of Pentium III's P6 microarchitecture designed from the ground up for mobile computing and first x86 to support micro-op fusion and smart cache.
  • Enhanced Pentium M: updated, dual core version of the Pentium M microarchitecture used in the first Intel Core microprocessors, first x86 to have shadow register architecture and speed step technology.
NetBurst
commonly referred to as P7 although its internal name was P68 (P7 was used for Itanium). Used in Pentium 4, Pentium D, and some Xeon microprocessors. Very long pipeline. The Prescott was a major architectural revision. Later revisions were the first to feature Intel's x86-64 architecture, enhanced branch prediction and trace cache, and eventually support was added for the NX (No eXecute) bit to implement executable-space protection.

64-bit (x86-64)

Core
reengineered P6-based microarchitecture used in Intel Core 2 and Xeon microprocessors, built on a 65 nm process, supporting x86-64 level SSE instruction and macro-op fusion and enhanced micro-op fusion with a wider front end and decoder, larger out-of-order core and renamed register, support loop stream detector and large shadow register file.
  • Penryn: 45 nm shrink of the Core microarchitecture with larger cache, higher FSB and clock speeds, SSE4.1 instructions, support for XOP and F/SAVE and F/STORE instructions, enhanced register alias table and larger integer register file.
Nehalem
released November 17, 2008, built on a 45 nm process and used in the Core i7, Core i5, Core i3 microprocessors. Incorporates the memory controller into the CPU die. Added important powerful new instructions, SSE4.2.
  • Westmere: 32 nm shrink of the Nehalem microarchitecture with several new features.
Sandy Bridge
32 nm microarchitecture, released January 9, 2011. Formerly called Gesher but renamed in 2007.[2] First x86 to introduce 256 bit AVX instruction set and implementation of YMM registers.
  • Ivy Bridge: successor to Sandy Bridge, using 22 nm process, released in April 2012.
Haswell
22 nm microarchitecture, released June 3, 2013. Added a number of new instructions, including AVX2 and FMA.
  • Broadwell: 14 nm derivative of the Haswell microarchitecture, released in September 2014. Three-cycle FMUL latency, 64 entry scheduler. Formerly called Rockwell.
Skylake
14 nm microarchitecture, released August 5, 2015.
  • Kaby Lake: successor to Skylake, released in August 2016, broke Intel's Tick-Tock schedule due to delays with the 10 nm process.
    • Amber Lake: ultra low power, mobile-only successor to Kaby Lake, using 14+ nm process, released in August 2018 (no architecture changes)[3]
    • Whiskey Lake: mobile-only successor to Kaby Lake Refresh, using 14++ nm process, released in August 2018 (has hardware mitigations for some vulnerabilities)[3]
  • Skylake-X: high-end desktop, workstation and server microarchitecture, released on June 19, 2017 (HEDT), July 11, 2017 (SP) and August 29, 2017 (W). Introduces support for AVX-512 instruction set.
  • Coffee Lake: successor to Kaby Lake, using 14++ nm process, released in October 2017
  • Cascade Lake: server and high-end desktop successor to Kaby Lake-X and Skylake-X, using 14++ nm process, released in April 2019
  • Comet Lake: successor to Coffee Lake, using 14++ nm process, released in August 2019[4]
  • Cooper Lake: server-only, optimized for AI oriented workloads using bfloat16, with limited availability only to Intel priority partners, using 14++ nm process, released in 2020[5][6]
Palm Cove
After releasing the Palm Cove core, Intel has changed their microarchitecture naming scheme, decoupling the CPU cores from their manufacturing nodes.[7][8]
Successor to Skylake (canceled), includes the AVX-512 instruction set.[9][10]
  • Cannon Lake: mobile-only successor of Kaby Lake, using Intel's 10 nm process, first and only microarchitecture to implement the Palm Cove core, released in May 2018. Formerly called Skymont, discontinued in December 2019.[11]
Sunny Cove
Successor to the Palm Cove core, first non-Atom core to include hardware acceleration for SHA hashing algorithms.[12]
  • Ice Lake: low power, mobile-only successor to Whiskey Lake, using 10 nm process, released in September 2019
  • Lakefield: mobile-only, Intel's first hybrid processor, released in June 2020. Sunny Cove is used in the singular performance core (P-core) of Lakefield processors.[13] AVX and more advanced instruction sets are disabled due to the E-core not supporting them.
  • Ice Lake-SP: server-only successor to Cascade Lake, using 10 nm process, released in April 2021[5][14]
Cypress Cove
Backport of Sunny Cove to Intel's 14 nm process
Willow Cove
Successor to the Sunny Cove core, includes new security features and redesigns the cache subsystem.[18]
  • Tiger Lake: successor to Ice Lake, using Intel's 10 nm SuperFin (10SF) process, released in Q4 2020
Golden Cove
Successor to the Willow Cove core, includes improvements to performance and power efficiency. Also includes new instructions.[19]
  • Alder Lake: hybrid processor, succeeds Rocket Lake and Tiger Lake; uses Intel 7 process (previously known as 10ESF),[20] released on November 4, 2021.[21] Golden Cove is used in P-cores of Alder Lake processors.[22]
  • Sapphire Rapids: server and workstation-only, successor to Ice Lake-SP, manufactured on Intel 7 process,[20][23] released on January 10, 2023. Introduces AMX.
Raptor Cove
A refresh of Golden Cove with increased L2 and L3 caches and core clocks.
  • Raptor Lake: successor to Alder Lake with increased cache sizes, core clocks and the number of E-cores, released on October 20, 2022. Manufactured using Intel 7 process. Raptor Cove is used in the P-cores while the E-cores are still implemented using Gracemont microarchitecture.

x86 ULV (Atom)

Bonnell
45 nm, low-power, in-order microarchitecture for use in Atom processors.
  • Saltwell: 32 nm shrink of the Bonnell microarchitecture.
Silvermont
22 nm, out-of-order microarchitecture for use in Atom processors, released on May 6, 2013.
  • Airmont: 14 nm shrink of the Silvermont microarchitecture.
Goldmont
14 nm Atom microarchitecture iteration after Silvermont but borrows heavily from Skylake processors (e.g., GPU), released in April 2016.[24][25]
  • Goldmont Plus: successor to Goldmont microarchitecture, still based on the 14 nm process, released on December 11, 2017.
Tremont
10 nm Atom microarchitecture iteration after Goldmont Plus.[26]
  • Lakefield: mobile-only, Intel's first hybrid processor, released in June 2020. Tremont is used in efficiency cores (E-cores) of Lakefield processors.[13]
  • Jasper Lake: Celeron and Pentium Silver desktop and mobile processors, released in Q1 2021.
  • Elkhart Lake: embedded processors targeted at IoT, released in Q1 2021.
Gracemont
Intel 7 process[20] Atom microarchitecture iteration after Tremont. First Atom class core with AVX and AVX2 support.
  • Alder Lake: hybrid processor, succeeds Rocket Lake and Tiger Lake, released on November 4, 2021. Gracemont is used in E-cores of Alder Lake processors.[22]
  • Raptor Lake: a refresh of Alder Lake, released on October 20, 2022.

Other microarchitectures

IA-64 (Itanium)

Merced
original Itanium microarchitecture. Used only in the first Itanium microprocessors.
McKinley
enhanced microarchitecture used in the first two generations of the Itanium 2 microprocessor. Madison is the 130 nm version.
Montecito
enhanced McKinley microarchitecture used in the Itanium 2 9000- and 9100-series of processors. Added dual core, coarse multithreading, and other improvements. The Montvale update added demand-based switching (SpeedStep) and core-level lockstep execution.
Tukwila
enhanced microarchitecture used in the Itanium 9300 series of processors. Added quad core, an integrated memory controller, QuickPath Interconnect, and other improvements e.g. a more active SoEMT.
Poulson
Itanium processor featuring an all-new microarchitecture.[27] 8 cores, decoupling in pipeline and in multithreading. 12-wide issue with partial out-of-order execution.[28]
Kittson
the last Itanium. It has the same microarchitecture as Poulson, but slightly higher clock speed for the top two models.

Miscellaneous

XScale
a microarchitecture implementing the ARM architecture instruction set.
Larrabee (cancelled 2010)
multi-core in-order x86-64 updated version of P5 microarchitecture, with wide SIMD vector units and texture sampling hardware for use in graphics. Cores derived from this microarchitecture are called MIC (Many Integrated Core).

Roadmap

Pentium 4 / Core lines

Pentium 4 / Core roadmap
Fab
process
Micro-
arch
Code
names
Core
gen
Xeon
Scalable
gen
Release
date
Processors
Desktop Mobile Enthusiast
/WS
2P
Server/WS
4P/8P
Server
180 nm P6,
NetBurst
Willamette N/A 2000-11-20 Willamette N/A Foster Foster MP
130 nm Northwood/
Mobile Pentium 4
Banias
2002-01-07 Northwood Northwood Mobile
Banias
Northwood-XE Prestonia
Gallatin
Gallatin
90 nm Prescott
Dothan
2004-02-01 Prescott
Smithfield
Dothan
Prescott 2M-XE
Smithfield-XE
Nocona
Irwindale
Paxville
Potomac
Cranford
Paxville
65 nm Cedar Mill
Yonah
Presler
Core
(Yonah only)
N/A 2006-01-05 Cedar Mill
Presler
Yonah Presler-XE Dempsey
Sossaman
Tulsa
Core Merom[29] Core 2 2006-07-27
[30][31]
Conroe Merom Kentsfield Woodcrest
Clovertown
Tigerton
45 nm Penryn 2007-11-11
[32]
Wolfdale Penryn Yorkfield Harpertown Dunnington
Nehalem Nehalem Previous[33]
(Core i)
N/A 2008-11-17
[34]
Lynnfield Clarksfield Bloomfield Gainestown Beckton
32 nm Westmere 2010-01-04
[35][36]
Clarkdale Arrandale Gulftown Westmere-EP Westmere-EX
Sandy
Bridge
Sandy
Bridge
2 (Core i) 2011-01-09
[37]
Sandy Bridge Sandy Bridge-M Sandy Bridge-E Sandy Bridge-EP N/A[38]
22 nm Ivy
Bridge
3 2012-04-29 Ivy Bridge Ivy Bridge-M Ivy Bridge-E
[39]
Ivy Bridge-EP
[40]
Ivy Bridge-EX
[40]
Haswell Haswell 4 2013-06-02 Haswell-DT
[41]
Haswell-MB
Haswell-H
Haswell-ULP/ULX[41]
Haswell-E Haswell-EP Haswell-EX
Devil's
Canyon
2014-06 Haswell-DT N/A
14 nm Broadwell 5 2014-09-05 Broadwell-DT Broadwell-H
Broadwell-U
Broadwell-Y
Broadwell-E Broadwell-EP[42] Broadwell-EX[42]
Skylake[lower-alpha 1] Skylake 6 1 2015-08-05
[43]
Skylake-S Skylake-H
Skylake-U
Skylake-Y
Skylake-X[44]
Skylake-W
Skylake-SP
(formerly Skylake-EP/-EX)[45]
Kaby
Lake
7 / 8 N/A 2016-10 Kaby Lake-S Kaby Lake-G
Kaby Lake-H
Kaby Lake-U
Kaby Lake-Y
Kaby Lake-X
[44]
N/A
Coffee
Lake
8 / 9 2017-10
[46]
Coffee Lake-S Coffee Lake-B
Coffee Lake-H
Coffee Lake-U
Coffee Lake-W
Whiskey
Lake
8 N/A 2018-08-28 N/A Whiskey Lake-U N/A
Amber
Lake
8 / 10 Amber Lake-Y
Cascade
Lake
N/A 2 2019-04-02 N/A Cascade Lake-X
Cascade Lake-W
Cascade Lake-SP
Cascade Lake-SP
Comet
Lake
10 N/A 2019-09[lower-alpha 2] Comet Lake-S Comet Lake-H
Comet Lake-U[47]
Comet Lake-Y[47]
Comet Lake-W N/A
Cooper
Lake
N/A 3 2020-06 N/A[48][49] Cooper Lake-SP
Cypress
Cove[50][51]
Rocket
Lake
11 N/A 2021-03 Rocket Lake-S N/A Rocket
Lake
N/A
10 nm Palm
Cove
Cannon
Lake
8 N/A 2018-05[lower-alpha 2] N/A Cannon Lake-U N/A
Sunny
Cove[52]
Ice
Lake
10 3 2019-09 (mobile)[lower-alpha 2]
2021-04 (server)
Ice Lake-U[53]
Ice Lake-Y[53]
Ice Lake-W Ice Lake-SP[54] N/A
Willow
Cove
Tiger
Lake
11 N/A 2020-09 Tiger Lake-H
Tiger Lake-H35
Tiger Lake-UP3
Tiger Lake-UP4
N/A
Intel 7[lower-alpha 3] Golden
Cove
Alder
Lake

(hybrid)
12 2021-11-04[17][55] Alder Lake-S Alder Lake-H
Alder Lake-P
Alder Lake-U
Sapphire
Rapids[23]
N/A 4 2023-01-10 N/A Sapphire Rapids-WS Sapphire Rapids-SP
Raptor
Cove
Raptor
Lake
13 / 14 N/A 2022-10-20 Raptor Lake-S Raptor Lake-HX
Raptor Lake-H
Raptor Lake-P
Raptor Lake-U
N/A
Emerald
Rapids
N/A 5 2023-12-14 N/A TBA Emerald Rapids–SP
Intel 4[20] Redwood
Cove
Meteor
Lake
Core Ultra
Series 1
N/A 2023-12-14[56] N/A[lower-alpha 4] Meteor Lake-H
Meteor Lake-U
N/A
Intel 3 TBA Granite
Rapids
N/A 6 2024 N/A TBA Granite Rapids–SP
Intel 20A Arrow
Lake[58]
Core Ultra N/A 2024 TBA N/A
Lunar
Lake
2024 N/A TBA
Intel 18A Panther
Lake
2025 TBA
Fab
process
Micro-
arch
Code
names
Core
gen
Xeon
Scalable
gen
Release
date
Desktop Mobile Enthusiast
/WS
2P
Server/WS
4P/8P
Server
Processors
  1. Cascade Lake and Cooper Lake microprocessors have additional instructions that enable Intel Deep Learning Boost.
  2. 2.0 2.1 2.2 retail availability
  3. Previously known as 10nm Enhanced Super Fin or 10ESF.[20]
  4. Meteor Lake will appear in notebooks and All-in-one computers, but not in conventional desktop PCs.[57]

Atom lines[59]

Atom roadmap
Fabri-
cation
process
Micro-
archi-
tecture
Release
date
Processors/SoCs
MID, smartphone Tablet Netbook Nettop Embedded Server Communication CE
45 nm Bonnell 2008 Silverthorne N/A Diamondville Tunnel Creek,
Stellarton
N/A Unknown Sodaville
2010 Lincroft Pineview Groveland
32 nm Saltwell 2011 Medfield (Penwell & Lexington),
Clover Trail+ (Cloverview)
Clover Trail (Cloverview) Cedar Trail (Cedarview) Unknown Centerton & Briarwood Unknown Berryville
22 nm Silvermont 2013 Merrifield (Tangier),[60] Slayton,
Moorefield (Anniedale)[61]
Bay Trail-T
(Valleyview)
Bay Trail-M
(Valleyview)
Bay Trail-D
(Valleyview)
Bay Trail-I
(Valleyview)
Avoton Rangeley Unknown
014 nm[59] Airmont 2014 Binghamton & Riverton Cherry Trail-T (Cherryview)[62] Braswell[63] Denverton Cancelled Unknown Unknown
Goldmont
[64]
2016 Broxton Cancelled Willow Trail Cancelled
Apollo Lake
Apollo Lake[65] Denverton[66] Unknown Unknown
Goldmont
Plus
[67]
2017 Unknown Unknown Gemini Lake[68]
Gemini Lake Refresh[69]
Unknown Unknown Unknown
10 nm Tremont[26] 2020 Unknown Lakefield (hybrid) Lakefield (hybrid)[70]
Elkhart Lake[71]
Jasper Lake [72]
Jacobsville
Parker Ridge[73]
Snow Ridge[74]
Unknown Unknown
Intel 7 Gracemont[75] 2021 Unknown Unknown Alder Lake (hybrid)[76]
Raptor Lake (hybrid)
Alder Lake-N [77][78]
Unknown Unknown Unknown
Intel 4 Crestmont 2023 Unknown Unknown Meteor Lake (hybrid) Grand Ridge Unknown Unknown
Intel 3 Crestmont 2024 Unknown Unknown Unknown Unknown Unknown Sierra Forest-AP Unknown Unknown
Intel 20A Skymont 2024 Unknown Unknown Arrow Lake (hybrid) Unknown Unknown Unknown
Intel 18A Darkmont 2025 Unknown Unknown Unknown Unknown Unknown Clearwater Forest-AP Unknown Unknown

See also

References

  1. Rant, Jon; "Extending the Legacy of Leadership: The 80386 Arrives", Intel Corporation, Special 32-Bit Issue Solutions, November/December 1985, page 2
  2. "An Update On Our Graphics-related Programs". May 25, 2010. http://blogs.intel.com/technology/2010/05/an_update_on_our_graphics-rela.php. 
  3. 3.0 3.1 Cutress, Ian. "Spectre and Meltdown in Hardware: Intel Clarifies Whiskey Lake and Amber Lake". https://www.anandtech.com/show/13301/spectre-and-meltdown-in-hardware-intel-clarifies-whiskey-lake-and-amber-lake. 
  4. "Intel Expands 10th Gen Intel Core Mobile Processor Family, Offering Double Digit Performance Gains" (in en-US). https://newsroom.intel.com/news/intel-expands-10th-gen-intel-core-mobile-processor-family-offering-double-digit-performance-gains/. 
  5. 5.0 5.1 Cutress, Ian. "Intel's Cooper Lake Plans: The Chip That Wasn't Meant to Exist, Fades Away". https://www.anandtech.com/show/15631/intels-cooper-lake-plans-the-chip-that-wasnt-meant-to-exist-dies-for-you. 
  6. Kennedy, Patrick (2020-03-16). "Intel Cooper Lake Rationalized Still Launching 1H 2020" (in en-US). https://www.servethehome.com/intel-cooper-lake-rationalized-still-launching-1h-2020/. 
  7. Schor, David (December 23, 2018). "Intel Reveals 10nm Sunny Cove Core, a New Core Roadmap, and Teases Ice Lake Chips". https://fuse.wikichip.org/news/1941/intel-reveals-10nm-sunny-cove-core-a-new-core-roadmap-and-teases-ice-lake-chips/. 
  8. Paul, Ian. "CPUs Decoded: Understanding Intel's Microarchitecture Names" (in en-US). https://www.howtogeek.com/680036/cpus-decoded-understanding-intels-microarchitecture-names/. 
  9. Cutress, Ian. "Intel's 10nm Cannon Lake and Core i3-8121U Deep Dive Review". https://www.anandtech.com/show/13405/intel-10nm-cannon-lake-and-core-i3-8121u-deep-dive-review. 
  10. "Palm Cove - Microarchitectures - Intel - WikiChip" (in en). https://en.wikichip.org/wiki/intel/microarchitectures/palm_cove. 
  11. Liu, Zhiye (October 31, 2019). "Intel Fires 10nm Cannon Lake NUC Into Oblivion". https://www.tomshardware.com/news/intel-fires-10nm-cannon-lake-nuc-into-oblivion. 
  12. "Sunny Cove - Microarchitectures - Intel". https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove. 
  13. 13.0 13.1 Cutress, Ian (July 2, 2020). "The Intel Lakefield Deep Dive: Everything To Know About the First x86 Hybrid CPU". https://www.anandtech.com/show/15877/intel-hybrid-cpu-lakefield-all-you-need-to-know. 
  14. "New Intel Processors Accelerate 5G Network Transformation". Newsroom.intel.com. 2021-04-06. https://newsroom.intel.com/news/new-intel-processors-accelerate-5g-network-transformation/. Retrieved 2022-05-08. 
  15. Cutress, Ian (March 30, 2021). "Intel octet Lake (14nm) Review: Core i911900K, Core i7-11700K, and Core i5-11600K". https://www.anandtech.com/show/16495/intel-rocket-lake-14nm-review-11900k-11700k-11600k. 
  16. "Intel Confirms Rocket Lake on Desktop for Q1 2021, with PCIe 4.0". https://www.anandtech.com/show/16145/intel-confirms-rocket-lake-on-desktop-for-q1-2021-with-pcie-40. 
  17. 17.0 17.1 Cutress, Ian (October 29, 2020). "Intel's 11th Gen Core Rocket Lake Detailed: Ice Lake Core with Xe Graphics". https://www.anandtech.com/show/16205/intels-11th-gen-core-rocket-lake-detailed-ice-lake-core-with-xe-graphics. 
  18. "Willow Cove - Microarchitectures - Intel". https://en.wikichip.org/wiki/intel/microarchitectures/willow_cove. 
  19. Cutress, Dr Ian. "Intel Alder Lake: Confirmed x86 Hybrid with Golden Cove and Gracemont for 2021". https://www.anandtech.com/show/15979/intel-alder-lake-confirmed-x86-hybrid-with-golden-cove-and-gracemont-for-2021. 
  20. 20.0 20.1 20.2 20.3 20.4 Cutress, Dr Ian. "Intel's Process Roadmap to 2025: with 4nm, 3nm, 20A and 18A?!". https://www.anandtech.com/show/16823/intel-accelerated-offensive-process-roadmap-updates-to-10nm-7nm-4nm-3nm-20a-18a-packaging-foundry-emib-foveros. 
  21. Cutress, Ian (April 1, 2020). "Intel Updates ISA Manual: New Instructions for Alder Lake, also BF16 for Sapphire Rapids". https://www.anandtech.com/show/15686/intel-updates-isa-manual-new-instructions-for-alder-lake-also-bf16-for-sapphire-rapids. 
  22. 22.0 22.1 Cutress, Ian; Frumusanu, Andrei (2021-08-19). "Intel Architecture Day 2021: Alder Lake, Golden Cove, and Gracemont Detailed" (in en). https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures. 
  23. 23.0 23.1 Pirzada, Usman (2020-10-07). "Intel Sapphire Rapids: MCM Design, 56 Golden Cove Cores, 64GB HBM2 On-Board Memory, Massive IPC Improvement and 400 Watt TDP" (in en-US). https://wccftech.com/intel-sapphire-rapids-mcm-design-56-golden-cove-cores-64gb-hbm2-on-board-memory-massive-ipc-improvement-and-400-watt-tdp/. 
  24. "Intel Software Development Emulator". http://software.intel.com/en-us/articles/intel-software-development-emulator. 
  25. ""Goldmont"- the sequel to Silvermont Atom?". https://forums.anandtech.com/threads/goldmont-the-sequel-to-silvermont-atom.2332517/. 
  26. 26.0 26.1 Cutress, Dr Ian. "Intel's new Atom Microarchitecture: The Tremont Core in Lakefield". https://www.anandtech.com/show/15009/intels-new-atom-microarchitecture-the-tremont-core. 
  27. Anton Shilov (June 19, 2007). "Intel Plans to change Itanium Micro-Architecture". X-bit Labs. http://www.xbitlabs.com/news/cpu/display/20070619230827.html. 
  28. David Kanter (2011-05-18). "Poulson: The Future of Itanium Servers". Realworldtech.com. https://www.realworldtech.com/poulson/. Retrieved 2022-05-08. 
  29. Crothers, Brooke (2009-02-10). "Intel moves up rollout of new chips | Nanotech - The Circuits Blog - CNET News". News.cnet.com. http://news.cnet.com/8301-13924_3-10160673-64.html. 
  30. "Intel CEO: Latest Platforms, Processors Form New Foundations For Digital Entertainment And Wireless Computing". http://www.intel.com/pressroom/archive/releases/20060105corp.htm. 
  31. "Intel Unveils World's Best Processor". http://www.intel.com/pressroom/archive/releases/20060727comp.htm. 
  32. "Intel Unveils 16 Next-Generation Processors, Including First Notebook Chips Built on 45nm Technology". http://www.intel.com/pressroom/archive/releases/20080107comp.htm. 
  33. "ARK | Your source for information on Intel products". 2013-05-30. https://ark.intel.com/. 
  34. "Intel Launches Fastest Processor on the Planet". http://www.intel.com/pressroom/archive/releases/2008/20081117comp_sm.htm. 
  35. Mark Bohr (Intel Senior Fellow, Logic Technology Development) (2009-02-10). "Intel 32nm Technology". http://download.intel.com/pressroom/kits/32nm/westmere/Mark_Bohr_32nm.pdf. 
  36. "Intel - Data Center Solutions, IoT, and PC Innovation". http://www.intel.com/technology/architecture-silicon/32nm/index.htm. 
  37. "Intel Sandy Bridge chip coming January 5". http://news.cnet.com/8301-13924_3-20022893-64.html. 
  38. Pop, Sebastian (9 April 2012). "Intel Ivy Bridge CPU Range Complete by Next Year". http://news.softpedia.com/news/Intel-Ivy-Bridge-CPU-Range-Complete-by-Next-Year-263451.shtml. 
  39. "Ivy Bridge-E delayed until second half of 2013". http://www.techspot.com/news/47849-ivy-bridge-e-delayed-until-second-half-of-2013.html. 
  40. 40.0 40.1 "Ivy Bridge EP and EX coming up in a year's time - the multi-socket platform heaven". 9 April 2012. http://vr-zone.com/articles/ivy-bridge-ep-and-ex-coming-up-in-a-year-s-time--the-multi-socket-platform-heaven/15488.html. 
  41. 41.0 41.1 "Leaked specifications of Haswell GT1/GT2/GT3 IGP". Tech News Pedia. 2012-05-20. http://technewspedia.com/leaked-specifications-of-haswell-gt1gt2gt3-igp. 
  42. 42.0 42.1 "Intel to release 22-core Xeon E5 v4 "Broadwell-EP" late in 2015 - KitGuru". http://www.kitguru.net/components/cpu/anton-shilov/intel-to-release-22-core-xeon-e5-v4-broadwell-ep-late-in-2015-company/. 
  43. "The wait for Skylake is almost over, first desktop chips likely to hit August 5". 6 July 2015. http://www.digitaltrends.com/computing/unlocked-intel-skylake-s-processors-reportedly-coming-august-5th/. 
  44. 44.0 44.1 Mujtaba, Hassan (25 April 2017). "Intel X299 HEDT Platform For Skylake X and Kaby Lake X Processors Announcement on 30th May, Launch on 26th June – Reviews Go Live on 16th June". https://wccftech.com/intel-x299-hedt-skylake-x-kaby-lake-x-launch-26-june-nda/. 
  45. Windeck, Christof. "Intel Xeon Gold, Platinum: Skylake-SP für Server "Mitte Sommer"". https://www.heise.de/newsticker/meldung/Intel-Xeon-Gold-Platinum-Skylake-SP-fuer-Server-Mitte-Sommer-3700559.html. 
  46. "Coffee Lake: Intels 6C-Prozessoren erfordern neue Boards - Golem.de". https://www.golem.de/news/coffee-lake-intels-6c-prozessoren-erfordern-neue-boards-1708-129594.html. 
  47. 47.0 47.1 online, heise. "Comet Lake-U: 15-Watt-CPUs für Notebook-CPUs mit sechs Kernen" (in de). https://www.heise.de/newsticker/meldung/Comet-Lake-U-15-Watt-CPUs-fuer-Notebook-CPUs-mit-sechs-Kernen-4501680.html. 
  48. "Intel streicht Cooper-Lake-Prozessoren für viele Server" (in de). https://www.heise.de/newsticker/meldung/Intel-streicht-Cooper-Lake-Prozessoren-fuer-viele-Server-4684519.html. 
  49. Kennedy, Patrick (2020-03-16). "Intel Cooper Lake Rationalized Still Launching 1H 2020" (in en-US). https://www.servethehome.com/intel-cooper-lake-rationalized-still-launching-1h-2020/. 
  50. "Intel's 11th Gen Processor (Rocket Lake-S) Architecture Detailed" (in en-US). https://newsroom.intel.com/news/intels-11th-gen-processor-rocket-lake-s-architecture-detailed/. 
  51. "Intel "Rocket Lake-S": 11. Core-i-Generation mit mehr Rechenleistung pro Takt" (in de). https://www.heise.de/news/Intel-Rocket-Lake-S-11-Core-i-Generation-mit-mehr-Rechenleistung-pro-Takt-4942543.html. 
  52. Bright, Peter (2018-12-12). "Intel unveils a new architecture for 2019: Sunny Cove" (in en-us). https://arstechnica.com/gadgets/2018/12/intel-unveils-a-new-architecture-for-2019-sunny-cove/. 
  53. 53.0 53.1 "Ice Lake Processor Family" (in en). https://www.intel.com/content/www/us/en/design/products-and-solutions/processors-and-chipsets/ice-lake/overview.html. 
  54. "Server-CPUs: Cooper Lake und Ice Lake nutzen gleichen Sockel - Golem.de" (in de-DE). https://www.golem.de/news/server-cpus-cooper-lake-und-ice-lake-nutzen-gleichen-sockel-1808-135909.html. 
  55. "Intels neuer Anlauf mit "Sunny Cove", Gen-11-GPU und Chiplets" (in de). https://www.heise.de/newsticker/meldung/Intels-neuer-Anlauf-mit-Sunny-Cove-Gen-11-GPU-und-Chiplets-4248713.html. 
  56. https://www.intel.com/content/www/us/en/newsroom/news/2023-intel-innovation-day-1-all-news.html
  57. Rißka, Volker (2023-09-26). "Für Notebooks & AIOs: Intel Meteor Lake kommt nicht für "klassische Desktop-PCs"" (in de). https://www.computerbase.de/2023-09/halbe-rolle-rueckwaerts-intel-meteor-lake-kommt-fuer-notebooks-und-aios/. 
  58. Mujtaba, Hassan (17 February 2022). "Intel Client & Server CPU Roadmap Updates: Meteor Lake In 2023, 20A & 18A Powered Xeons & Core Chips Beyond 2024". https://wccftech.com/intel-client-server-cpu-roadmap-updates-meteor-lake-in-2023-20a-18a-powered-xeons-core-chips-beyond-2024/. 
  59. 59.0 59.1 "Intel's Silvermont Architecture Revealed: Getting Serious About Mobile". http://www.anandtech.com/show/6936/intels-silvermont-architecture-revealed-getting-serious-about-mobile. 
  60. Hiroshige, Goto. "Intel Products for Tablets & SmartPhones". 標準. Impress. http://pc.watch.impress.co.jp/video/pcw/docs/569/575/p2.pdf. 
  61. "Import Data and Price of anniedale". https://www.zauba.com/import-anniedale-hs-code.html. 
  62. "アウトオブオーダーと最新プロセスを採用する今後のAtom". 30 November 2012. http://pc.watch.impress.co.jp/docs/column/ubiq/20121130_576105.html. 
  63. "Products (Formerly Braswell)". http://ark.intel.com/products/codename/66094/Braswell#@All. 
  64. Smith, Ryan; Cutress, Ian (29 April 2016). "Intel's Changing Future: Smartphone SoCs Broxton & SoFIA Officially Canceled". Anandtech.com. http://www.anandtech.com/show/10288/intel-broxton-sofia-smartphone-socs-cancelled. 
  65. "Products (Formerly Apollo Lake)". http://ark.intel.com/products/codename/80644/Apollo-Lake. 
  66. "Products (Formerly Denverton)". https://ark.intel.com/products/codename/63508/Denverton. 
  67. Shilov, Anton (December 12, 2017). "Intel Launches New Pentium Silver and Celeron Atom Processors: Gemini Lake is Here". https://www.anandtech.com/show/12146/intel-launches-gemini-lake-pentium-silver-and-celeron-socs-new-cpu-media-features. 
  68. "Products (Formerly Gemini Lake)". https://ark.intel.com/products/codename/83915/Gemini-Lake. 
  69. "Products (Formerly Gemini Lake Refresh)". https://ark.intel.com/content/www/us/en/ark/products/codename/197862/gemini-lake-refresh.html. 
  70. "Products formerly Lakefield". https://ark.intel.com/content/www/us/en/ark/products/codename/81657/lakefield.html. 
  71. "Products formerly Elkhart Lake". https://ark.intel.com/content/www/us/en/ark/products/codename/128825/elkhart-lake.html. 
  72. "Products formerly Jasper Lake". https://ark.intel.com/content/www/us/en/ark/products/codename/128823/jasper-lake.html. 
  73. "Products formerly Parker Ridge". https://ark.intel.com/content/www/us/en/ark/products/codename/229610/products-formerly-parker-ridge.html. 
  74. "Products formerly Snow Ridge". https://ark.intel.com/content/www/us/en/ark/products/codename/87586/snow-ridge.html. 
  75. "Intel Architecture Day 2021: Alder Lake, Golden Cove, and Gracemont Detailed". https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/4. 
  76. "Products formerly Alder Lake". https://ark.intel.com/content/www/us/en/ark/products/codename/147470/alder-lake.html. 
  77. "Intel Introduces New Intel Processor for Upcoming Essential Segment". https://www.intel.com/content/www/us/en/newsroom/news/welcome-the-new-intel-processor.html. 
  78. "Products formerly Alder Lake-N". https://ark.intel.com/content/www/us/en/ark/products/codename/232598/products-formerly-alder-laken.html. 

External links




Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Engineering:List_of_Intel_CPU_microarchitectures
1 | Status: cached on August 19 2024 20:30:14
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF