Rising Step Load Testing (or RSL testing) is a testing system that can apply loads in tension or bending to evaluate hydrogen-induced cracking (also called hydrogen embrittlement). It was specifically designed to conduct the accelerated ASTM F1624[1] step-modified, slow strain rate tests on a variety of test coupons or structural components. It can also function to conduct conventional ASTM E8[2] tensile tests; ASTM F519[3] 200-hr Sustained Load Tests with subsequent programmable step loads to rupture for increased reliability; and ASTM G129 Slow Strain Rate Tensile tests.
The RSL Testing System can be applied to all of the specimen geometries in ASTM F519, including Notched Round Tensile Bars, Notched C-Rings, and Notched Square Bars. Product testing of actual hardware can also be conducted, such as with fasteners. Taking mechanical advantage of by testing in bending allows large diameter bolts to be tested with only a 1-kip load cell.
The RSL Test Method has been demonstrated as a valuable tool in the testing of high-performance materials for determining susceptibility to hydrogen embrittlement. This test is dependent upon the test machine’s capability to provide a profile with incremental increases in the applied stress as a function of time. It is imperative that the load increases do not overshoot the next elevation in applied stress. This is achieved through careful design and operation of the loading mechanisms. Once this is achieved, repeatability is good with variance in the low single digits that are probably related more to surface roughness, internal defects, and other intrinsic material properties differences rather than the testing equipment.
Precision in controlling the load allows for greater sensitivity in measuring crack extension via load drop and compliance correlation than obtainable with high-voltage electrical resistivity measurements and eliminates the need for clip gages. This capability allows for precise electronic detection of the maximum load required for Crack Tip Opening Displacement calculations of Fracture Toughness and precise detection of the onset of crack growth required for measurement of the threshold stress for hydrogen embrittlement, environmental or stress corrosion cracking.
Original source: https://en.wikipedia.org/wiki/Rising step load testing.
Read more |