In computational complexity theory, the exponential hierarchy is a hierarchy of complexity classes that is an exponential time analogue of the polynomial hierarchy. As elsewhere in complexity theory, “exponential” is used in two different meanings (linear exponential bounds [math]\displaystyle{ 2^{cn} }[/math] for a constant c, and full exponential bounds [math]\displaystyle{ 2^{n^c} }[/math]), leading to two versions of the exponential hierarchy.[1][2] This hierarchy is sometimes also referred to as the weak exponential hierarchy, to differentiate it from the strong exponential hierarchy.[2][3]
The complexity class EH is the union of the classes [math]\displaystyle{ \Sigma^\mathsf{E}_k }[/math] for all k, where [math]\displaystyle{ \Sigma^\mathsf{E}_k=\mathsf{NE}^{\Sigma^\mathsf{P}_{k-1}} }[/math] (i.e., languages computable in nondeterministic time [math]\displaystyle{ 2^{cn} }[/math] for some constant c with a [math]\displaystyle{ \Sigma^\mathsf{P}_{k-1} }[/math] oracle) and [math]\displaystyle{ \Sigma^\mathsf{E}_0 = \mathsf{E} }[/math]. One also defines
An equivalent definition is that a language L is in [math]\displaystyle{ \Sigma^\mathsf{E}_k }[/math] if and only if it can be written in the form
where [math]\displaystyle{ R(x,y_1,\ldots,y_n) }[/math] is a predicate computable in time [math]\displaystyle{ 2^{c|x|} }[/math] (which implicitly bounds the length of yi). Also equivalently, EH is the class of languages computable on an alternating Turing machine in time [math]\displaystyle{ 2^{cn} }[/math] for some c with constantly many alternations.
EXPH is the union of the classes [math]\displaystyle{ \Sigma^{\mathsf{EXP}}_k }[/math], where [math]\displaystyle{ \Sigma^{\mathsf{EXP}}_k=\mathsf{NEXP}^{\Sigma^\mathsf{P}_{k-1}} }[/math] (languages computable in nondeterministic time [math]\displaystyle{ 2^{n^c} }[/math] for some constant c with a [math]\displaystyle{ \Sigma^\mathsf{P}_{k-1} }[/math] oracle), [math]\displaystyle{ \Sigma^{\mathsf{EXP}}_0 = \mathsf{EXP} }[/math], and again:
A language L is in [math]\displaystyle{ \Sigma^{\mathsf{EXP}}_k }[/math] if and only if it can be written as
where [math]\displaystyle{ R(x,y_1,\ldots,y_k) }[/math] is computable in time [math]\displaystyle{ 2^{|x|^c} }[/math] for some c, which again implicitly bounds the length of yi. Equivalently, EXPH is the class of languages computable in time [math]\displaystyle{ 2^{n^c} }[/math] on an alternating Turing machine with constantly many alternations.
Original source: https://en.wikipedia.org/wiki/Exponential hierarchy.
Read more |