Short description: none
This article summarizes several identities in exterior calculus.[1][2][3][4][5]
Notation
The following summarizes short definitions and notations that are used in this article.
Manifold
[math]\displaystyle{ M }[/math], [math]\displaystyle{ N }[/math] are [math]\displaystyle{ n }[/math]-dimensional smooth manifolds, where [math]\displaystyle{ n\in \mathbb{N} }[/math]. That is, differentiable manifolds that can be differentiated enough times for the purposes on this page.
[math]\displaystyle{ p \in M }[/math], [math]\displaystyle{ q \in N }[/math] denote one point on each of the manifolds.
The boundary of a manifold [math]\displaystyle{ M }[/math] is a manifold [math]\displaystyle{ \partial M }[/math], which has dimension [math]\displaystyle{ n - 1 }[/math]. An orientation on [math]\displaystyle{ M }[/math] induces an orientation on [math]\displaystyle{ \partial M }[/math].
We usually denote a submanifold by [math]\displaystyle{ \Sigma \subset M }[/math].
Tangent and cotangent bundles
[math]\displaystyle{ TM }[/math], [math]\displaystyle{ T^{*}M }[/math] denote the tangent bundle and cotangent bundle, respectively, of the smooth manifold [math]\displaystyle{ M }[/math].
[math]\displaystyle{ T_p M }[/math], [math]\displaystyle{ T_q N }[/math] denote the tangent spaces of [math]\displaystyle{ M }[/math], [math]\displaystyle{ N }[/math] at the points [math]\displaystyle{ p }[/math], [math]\displaystyle{ q }[/math], respectively. [math]\displaystyle{ T^{*}_p M }[/math] denotes the cotangent space of [math]\displaystyle{ M }[/math] at the point [math]\displaystyle{ p }[/math].
Sections of the tangent bundles, also known as vector fields, are typically denoted as [math]\displaystyle{ X, Y, Z \in \Gamma(TM) }[/math] such that at a point [math]\displaystyle{ p \in M }[/math] we have [math]\displaystyle{ X|_p, Y|_p, Z|_p \in T_p M }[/math]. Sections of the cotangent bundle, also known as differential 1-forms (or covector fields), are typically denoted as [math]\displaystyle{ \alpha, \beta \in \Gamma(T^{*}M) }[/math] such that at a point [math]\displaystyle{ p \in M }[/math] we have [math]\displaystyle{ \alpha|_p, \beta|_p \in T^{*}_p M }[/math]. An alternative notation for [math]\displaystyle{ \Gamma(T^{*}M) }[/math] is [math]\displaystyle{ \Omega^1(M) }[/math].
Differential k-forms
Differential [math]\displaystyle{ k }[/math]-forms, which we refer to simply as [math]\displaystyle{ k }[/math]-forms here, are differential forms defined on [math]\displaystyle{ TM }[/math]. We denote the set of all [math]\displaystyle{ k }[/math]-forms as [math]\displaystyle{ \Omega^k(M) }[/math]. For [math]\displaystyle{ 0\leq k,\ l,\ m\leq n }[/math] we usually write [math]\displaystyle{ \alpha\in\Omega^k(M) }[/math], [math]\displaystyle{ \beta\in\Omega^l(M) }[/math], [math]\displaystyle{ \gamma\in\Omega^m(M) }[/math].
[math]\displaystyle{ 0 }[/math]-forms [math]\displaystyle{ f\in\Omega^0(M) }[/math] are just scalar functions [math]\displaystyle{ C^{\infty}(M) }[/math] on [math]\displaystyle{ M }[/math]. [math]\displaystyle{ \mathbf{1}\in\Omega^0(M) }[/math] denotes the constant [math]\displaystyle{ 0 }[/math]-form equal to [math]\displaystyle{ 1 }[/math] everywhere.
Omitted elements of a sequence
When we are given [math]\displaystyle{ (k+1) }[/math] inputs [math]\displaystyle{ X_0,\ldots,X_k }[/math] and a [math]\displaystyle{ k }[/math]-form [math]\displaystyle{ \alpha\in\Omega^k(M) }[/math] we denote omission of the [math]\displaystyle{ i }[/math]th entry by writing
- [math]\displaystyle{ \alpha(X_0,\ldots,\hat{X}_i,\ldots,X_k):=\alpha(X_0,\ldots,X_{i-1},X_{i+1},\ldots,X_k) . }[/math]
Exterior product
The exterior product is also known as the wedge product. It is denoted by [math]\displaystyle{ \wedge : \Omega^k(M) \times \Omega^l(M) \rightarrow \Omega^{k+l}(M) }[/math]. The exterior product of a [math]\displaystyle{ k }[/math]-form [math]\displaystyle{ \alpha\in\Omega^k(M) }[/math] and an [math]\displaystyle{ l }[/math]-form [math]\displaystyle{ \beta\in\Omega^l(M) }[/math] produce a [math]\displaystyle{ (k+l) }[/math]-form [math]\displaystyle{ \alpha\wedge\beta \in\Omega^{k+l}(M) }[/math]. It can be written using the set [math]\displaystyle{ S(k,k+l) }[/math] of all permutations [math]\displaystyle{ \sigma }[/math] of [math]\displaystyle{ \{1,\ldots,n\} }[/math] such that [math]\displaystyle{ \sigma(1)\lt \ldots \lt \sigma(k), \ \sigma(k+1)\lt \ldots \lt \sigma(k+l) }[/math] as
- [math]\displaystyle{ (\alpha\wedge\beta)(X_1,\ldots,X_{k+l})=\sum_{\sigma\in S(k,k+l)}\text{sign}(\sigma)\alpha(X_{\sigma(1)},\ldots,X_{\sigma(k)})\otimes\beta(X_{\sigma(k+1)},\ldots,X_{\sigma(k+l)}) . }[/math]
Directional derivative
The directional derivative of a 0-form [math]\displaystyle{ f\in\Omega^0(M) }[/math] along a section [math]\displaystyle{ X\in\Gamma(TM) }[/math] is a 0-form denoted [math]\displaystyle{ \partial_X f . }[/math]
Exterior derivative
The exterior derivative [math]\displaystyle{ d_k : \Omega^k(M) \rightarrow \Omega^{k+1}(M) }[/math] is defined for all [math]\displaystyle{ 0 \leq k\leq n }[/math]. We generally omit the subscript when it is clear from the context.
For a [math]\displaystyle{ 0 }[/math]-form [math]\displaystyle{ f\in\Omega^0(M) }[/math] we have [math]\displaystyle{ d_0f\in\Omega^1(M) }[/math] as the [math]\displaystyle{ 1 }[/math]-form that gives the directional derivative, i.e., for the section [math]\displaystyle{ X\in \Gamma(TM) }[/math] we have [math]\displaystyle{ (d_0f)(X) = \partial_X f }[/math], the directional derivative of [math]\displaystyle{ f }[/math] along [math]\displaystyle{ X }[/math].[6]
For [math]\displaystyle{ 0 \lt k\leq n }[/math],[6]
- [math]\displaystyle{ (d_k\omega)(X_0,\ldots,X_k)=\sum_{0\leq j\leq k}(-1)^jd_{0}(\omega(X_0,\ldots,\hat{X}_j,\ldots,X_k))(X_j) + \sum_{0\leq i \lt j\leq k}(-1)^{i+j}\omega([X_i,X_j],X_0,\ldots,\hat{X}_i,\ldots,\hat{X}_j,\ldots,X_k) . }[/math]
Lie bracket
The Lie bracket of sections [math]\displaystyle{ X,Y \in \Gamma(TM) }[/math] is defined as the unique section [math]\displaystyle{ [X,Y] \in \Gamma(TM) }[/math] that satisfies
- [math]\displaystyle{
\forall f\in\Omega^0(M) \Rightarrow \partial_{[X,Y]}f = \partial_X \partial_Y f - \partial_Y \partial_X f .
}[/math]
Tangent maps
If [math]\displaystyle{ \phi : M \rightarrow N }[/math] is a smooth map, then [math]\displaystyle{ d\phi|_p:T_pM\rightarrow T_{\phi(p)}N }[/math] defines a tangent map from [math]\displaystyle{ M }[/math] to [math]\displaystyle{ N }[/math]. It is defined through curves [math]\displaystyle{ \gamma }[/math] on [math]\displaystyle{ M }[/math] with derivative [math]\displaystyle{ \gamma'(0)=X\in T_pM }[/math] such that
- [math]\displaystyle{ d\phi(X):=(\phi\circ\gamma)' . }[/math]
Note that [math]\displaystyle{ \phi }[/math] is a [math]\displaystyle{ 0 }[/math]-form with values in [math]\displaystyle{ N }[/math].
Pull-back
If [math]\displaystyle{ \phi : M \rightarrow N }[/math] is a smooth map, then the pull-back of a [math]\displaystyle{ k }[/math]-form [math]\displaystyle{ \alpha\in \Omega^k(N) }[/math] is defined such that for any [math]\displaystyle{ k }[/math]-dimensional submanifold [math]\displaystyle{ \Sigma\subset M }[/math]
- [math]\displaystyle{ \int_{\Sigma} \phi^*\alpha = \int_{\phi(\Sigma)} \alpha . }[/math]
The pull-back can also be expressed as
- [math]\displaystyle{ (\phi^*\alpha)(X_1,\ldots,X_k)=\alpha(d\phi(X_1),\ldots,d\phi(X_k)) . }[/math]
Interior product
Also known as the interior derivative, the interior product given a section [math]\displaystyle{ Y\in \Gamma(TM) }[/math] is a map [math]\displaystyle{ \iota_Y:\Omega^{k+1}(M) \rightarrow \Omega^k(M) }[/math] that effectively substitutes the first input of a [math]\displaystyle{ (k+1) }[/math]-form with [math]\displaystyle{ Y }[/math]. If [math]\displaystyle{ \alpha\in\Omega^{k+1}(M) }[/math] and [math]\displaystyle{ X_i\in \Gamma(TM) }[/math] then
- [math]\displaystyle{ (\iota_Y\alpha)(X_1,\ldots,X_k) = \alpha(Y,X_1,\ldots,X_k) . }[/math]
Metric tensor
Given a nondegenerate bilinear form [math]\displaystyle{ g_p( \cdot , \cdot ) }[/math] on each [math]\displaystyle{ T_p M }[/math] that is continuous on [math]\displaystyle{ M }[/math], the manifold becomes a pseudo-Riemannian manifold. We denote the metric tensor [math]\displaystyle{ g }[/math], defined pointwise by [math]\displaystyle{ g( X , Y )|_p = g_p( X|_p , Y|_p ) }[/math]. We call [math]\displaystyle{ s=\operatorname{sign}(g) }[/math] the signature of the metric. A Riemannian manifold has [math]\displaystyle{ s=1 }[/math], whereas Minkowski space has [math]\displaystyle{ s=-1 }[/math].
Musical isomorphisms
The metric tensor [math]\displaystyle{ g(\cdot,\cdot) }[/math] induces duality mappings between vector fields and one-forms: these are the musical isomorphisms flat [math]\displaystyle{ \flat }[/math] and sharp [math]\displaystyle{ \sharp }[/math]. A section [math]\displaystyle{ A \in \Gamma(TM) }[/math] corresponds to the unique one-form [math]\displaystyle{ A^{\flat}\in\Omega^1(M) }[/math] such that for all sections [math]\displaystyle{ X \in \Gamma(TM) }[/math], we have:
- [math]\displaystyle{ A^{\flat}(X) = g(A,X) . }[/math]
A one-form [math]\displaystyle{ \alpha\in\Omega^1(M) }[/math] corresponds to the unique vector field [math]\displaystyle{ \alpha^{\sharp}\in \Gamma(TM) }[/math] such that for all [math]\displaystyle{ X \in \Gamma(TM) }[/math], we have:
- [math]\displaystyle{ \alpha(X) = g(\alpha^\sharp,X) . }[/math]
These mappings extend via multilinearity to mappings from [math]\displaystyle{ k }[/math]-vector fields to [math]\displaystyle{ k }[/math]-forms and [math]\displaystyle{ k }[/math]-forms to [math]\displaystyle{ k }[/math]-vector fields through
- [math]\displaystyle{ (A_1 \wedge A_2 \wedge \cdots \wedge A_k)^{\flat} = A_1^{\flat} \wedge A_2^{\flat} \wedge \cdots \wedge A_k^{\flat} }[/math]
- [math]\displaystyle{ (\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_k)^{\sharp} = \alpha_1^{\sharp} \wedge \alpha_2^{\sharp} \wedge \cdots \wedge \alpha_k^{\sharp}. }[/math]
Hodge star
For an n-manifold M, the Hodge star operator [math]\displaystyle{ {\star}:\Omega^k(M)\rightarrow\Omega^{n-k}(M) }[/math] is a duality mapping taking a [math]\displaystyle{ k }[/math]-form [math]\displaystyle{ \alpha \in \Omega^k(M) }[/math] to an [math]\displaystyle{ (n{-}k) }[/math]-form [math]\displaystyle{ ({\star}\alpha) \in \Omega^{n-k}(M) }[/math].
It can be defined in terms of an oriented frame [math]\displaystyle{ (X_1,\ldots,X_n) }[/math] for [math]\displaystyle{ TM }[/math], orthonormal with respect to the given metric tensor [math]\displaystyle{ g }[/math]:
- [math]\displaystyle{
({\star}\alpha)(X_1,\ldots,X_{n-k})=\alpha(X_{n-k+1},\ldots,X_n) .
}[/math]
Co-differential operator
The co-differential operator [math]\displaystyle{ \delta:\Omega^k(M)\rightarrow\Omega^{k-1}(M) }[/math] on an [math]\displaystyle{ n }[/math] dimensional manifold [math]\displaystyle{ M }[/math] is defined by
- [math]\displaystyle{ \delta := (-1)^{k} {\star}^{-1} d {\star} = (-1)^{nk+n+1}{\star} d {\star} . }[/math]
The Hodge–Dirac operator, [math]\displaystyle{ d+\delta }[/math], is a Dirac operator studied in Clifford analysis.
Oriented manifold
An [math]\displaystyle{ n }[/math]-dimensional orientable manifold M is a manifold that can be equipped with a choice of an n-form [math]\displaystyle{ \mu\in\Omega^n(M) }[/math] that is continuous and nonzero everywhere on M.
Volume form
On an orientable manifold [math]\displaystyle{ M }[/math] the canonical choice of a volume form given a metric tensor [math]\displaystyle{ g }[/math] and an orientation is [math]\displaystyle{ \mathbf{det}:=\sqrt{|\det g|}\;dX_1^{\flat}\wedge\ldots\wedge dX_n^{\flat} }[/math] for any basis [math]\displaystyle{ dX_1,\ldots, dX_n }[/math] ordered to match the orientation.
Area form
Given a volume form [math]\displaystyle{ \mathbf{det} }[/math] and a unit normal vector [math]\displaystyle{ N }[/math] we can also define an area form [math]\displaystyle{ \sigma:=\iota_N\textbf{det} }[/math] on the boundary [math]\displaystyle{ \partial M. }[/math]
Bilinear form on k-forms
A generalization of the metric tensor, the symmetric bilinear form between two [math]\displaystyle{ k }[/math]-forms [math]\displaystyle{ \alpha,\beta\in\Omega^k(M) }[/math], is defined pointwise on [math]\displaystyle{ M }[/math] by
- [math]\displaystyle{
\langle\alpha,\beta\rangle|_p := {\star}(\alpha\wedge {\star}\beta )|_p .
}[/math]
The [math]\displaystyle{ L^2 }[/math]-bilinear form for the space of [math]\displaystyle{ k }[/math]-forms [math]\displaystyle{ \Omega^k(M) }[/math] is defined by
- [math]\displaystyle{
\langle\!\langle\alpha,\beta\rangle\!\rangle:= \int_M\alpha\wedge {\star}\beta .
}[/math]
In the case of a Riemannian manifold, each is an inner product (i.e. is positive-definite).
Lie derivative
We define the Lie derivative [math]\displaystyle{ \mathcal{L}:\Omega^k(M)\rightarrow\Omega^k(M) }[/math] through Cartan's magic formula for a given section [math]\displaystyle{ X\in \Gamma(TM) }[/math] as
- [math]\displaystyle{
\mathcal{L}_X = d \circ \iota_X + \iota_X \circ d .
}[/math]
It describes the change of a [math]\displaystyle{ k }[/math]-form along a flow [math]\displaystyle{ \phi_t }[/math] associated to the section [math]\displaystyle{ X }[/math].
Laplace–Beltrami operator
The Laplacian [math]\displaystyle{ \Delta:\Omega^k(M) \rightarrow \Omega^k(M) }[/math] is defined as [math]\displaystyle{ \Delta = -(d\delta + \delta d) }[/math].
Important definitions
Definitions on Ωk(M)
[math]\displaystyle{ \alpha\in\Omega^k(M) }[/math] is called...
- closed if [math]\displaystyle{ d\alpha=0 }[/math]
- exact if [math]\displaystyle{ \alpha = d\beta }[/math] for some [math]\displaystyle{ \beta\in\Omega^{k-1} }[/math]
- coclosed if [math]\displaystyle{ \delta\alpha=0 }[/math]
- coexact if [math]\displaystyle{ \alpha = \delta\beta }[/math] for some [math]\displaystyle{ \beta\in\Omega^{k+1} }[/math]
- harmonic if closed and coclosed
Cohomology
The [math]\displaystyle{ k }[/math]-th cohomology of a manifold [math]\displaystyle{ M }[/math] and its exterior derivative operators [math]\displaystyle{ d_0,\ldots,d_{n-1} }[/math] is given by
- [math]\displaystyle{
H^k(M):=\frac{\text{ker}(d_{k})}{\text{im}(d_{k-1})}
}[/math]
Two closed [math]\displaystyle{ k }[/math]-forms [math]\displaystyle{ \alpha,\beta\in\Omega^k(M) }[/math] are in the same cohomology class if their difference is an exact form i.e.
- [math]\displaystyle{
[\alpha]=[\beta] \ \ \Longleftrightarrow\ \ \alpha{-}\beta = d\eta \ \text{ for some } \eta\in\Omega^{k-1}(M)
}[/math]
A closed surface of genus [math]\displaystyle{ g }[/math] will have [math]\displaystyle{ 2g }[/math] generators which are harmonic.
Dirichlet energy
Given [math]\displaystyle{ \alpha\in\Omega^k(M) }[/math], its Dirichlet energy is
- [math]\displaystyle{
\mathcal{E}_\text{D}(\alpha):= \dfrac{1}{2}\langle\!\langle d\alpha,d\alpha\rangle\!\rangle + \dfrac{1}{2}\langle\!\langle \delta\alpha,\delta\alpha\rangle\!\rangle
}[/math]
Properties
Exterior derivative properties
- [math]\displaystyle{
\int_{\Sigma} d\alpha = \int_{\partial\Sigma} \alpha }[/math] ( Stokes' theorem )
- [math]\displaystyle{
d \circ d = 0
}[/math] ( cochain complex )
- [math]\displaystyle{
d(\alpha \wedge \beta ) = d\alpha\wedge \beta +(-1)^k\alpha\wedge d\beta
}[/math] for [math]\displaystyle{ \alpha\in\Omega^k(M), \ \beta\in\Omega^l(M) }[/math] ( Leibniz rule )
- [math]\displaystyle{
df(X) = \partial_X f
}[/math] for [math]\displaystyle{ f\in\Omega^0(M), \ X\in \Gamma(TM) }[/math] ( directional derivative )
- [math]\displaystyle{
d\alpha = 0
}[/math] for [math]\displaystyle{ \alpha \in \Omega^n(M), \ \text{dim}(M)=n }[/math]
Exterior product properties
- [math]\displaystyle{
\alpha \wedge \beta = (-1)^{kl}\beta \wedge \alpha
}[/math] for [math]\displaystyle{ \alpha\in\Omega^k(M), \ \beta\in\Omega^l(M) }[/math] ( alternating )
- [math]\displaystyle{
(\alpha \wedge \beta)\wedge\gamma = \alpha \wedge (\beta\wedge\gamma)
}[/math] ( associativity )
- [math]\displaystyle{
(\lambda\alpha) \wedge \beta = \lambda (\alpha \wedge \beta)
}[/math] for [math]\displaystyle{ \lambda\in\mathbb{R} }[/math] ( compatibility of scalar multiplication )
- [math]\displaystyle{
\alpha \wedge ( \beta_1 + \beta_2 ) = \alpha \wedge \beta_1 + \alpha \wedge \beta_2
}[/math] ( distributivity over addition )
- [math]\displaystyle{
\alpha \wedge \alpha = 0
}[/math] for [math]\displaystyle{ \alpha\in\Omega^k(M) }[/math] when [math]\displaystyle{ k }[/math] is odd or [math]\displaystyle{ \operatorname{rank} \alpha \le 1 }[/math]. The rank of a [math]\displaystyle{ k }[/math]-form [math]\displaystyle{ \alpha }[/math] means the minimum number of monomial terms (exterior products of one-forms) that must be summed to produce [math]\displaystyle{ \alpha }[/math].
Pull-back properties
- [math]\displaystyle{
d(\phi^*\alpha) = \phi^*(d\alpha)
}[/math] ( commutative with [math]\displaystyle{ d }[/math] )
- [math]\displaystyle{
\phi^*(\alpha\wedge\beta) = (\phi^*\alpha)\wedge(\phi^*\beta)
}[/math] ( distributes over [math]\displaystyle{ \wedge }[/math] )
- [math]\displaystyle{
(\phi_1\circ\phi_2)^* = \phi_2^*\phi_1^*
}[/math] ( contravariant )
- [math]\displaystyle{
\phi^*f=f\circ\phi
}[/math] for [math]\displaystyle{ f\in\Omega^0(N) }[/math] ( function composition )
Musical isomorphism properties
- [math]\displaystyle{
(X^{\flat})^{\sharp}=X
}[/math]
- [math]\displaystyle{
(\alpha^{\sharp})^{\flat}=\alpha
}[/math]
Interior product properties
- [math]\displaystyle{
\iota_X \circ \iota_X = 0
}[/math] ( nilpotent )
- [math]\displaystyle{
\iota_X \circ \iota_Y = - \iota_Y \circ \iota_X
}[/math]
- [math]\displaystyle{
\iota_X (\alpha \wedge \beta ) = (\iota_X\alpha)\wedge\beta + (-1)^k\alpha\wedge(\iota_X \beta )
}[/math] for [math]\displaystyle{ \alpha\in\Omega^k(M), \ \beta\in\Omega^l(M) }[/math] ( Leibniz rule )
- [math]\displaystyle{
\iota_X\alpha = \alpha(X)
}[/math] for [math]\displaystyle{ \alpha\in\Omega^1(M) }[/math]
- [math]\displaystyle{
\iota_X f = 0
}[/math] for [math]\displaystyle{ f \in \Omega^0(M) }[/math]
- [math]\displaystyle{
\iota_X(f\alpha) = f \iota_X\alpha
}[/math] for [math]\displaystyle{ f \in \Omega^0(M) }[/math]
Hodge star properties
- [math]\displaystyle{
{\star}(\lambda_1\alpha + \lambda_2\beta) = \lambda_1({\star}\alpha) + \lambda_2({\star}\beta)
}[/math] for [math]\displaystyle{ \lambda_1,\lambda_2\in\mathbb{R} }[/math] ( linearity )
- [math]\displaystyle{
{\star}{\star}\alpha = s(-1)^{k(n-k)}\alpha
}[/math] for [math]\displaystyle{ \alpha\in \Omega^k(M) }[/math], [math]\displaystyle{ n=\dim(M) }[/math], and [math]\displaystyle{ s = \operatorname{sign}(g) }[/math] the sign of the metric
- [math]\displaystyle{
{\star}^{(-1)} = s(-1)^{k(n-k)}{\star}
}[/math] ( inversion )
- [math]\displaystyle{
{\star}(f\alpha)=f({\star}\alpha)
}[/math] for [math]\displaystyle{ f\in\Omega^0(M) }[/math] ( commutative with [math]\displaystyle{ 0 }[/math]-forms )
- [math]\displaystyle{
\langle\!\langle\alpha,\alpha\rangle\!\rangle = \langle\!\langle{\star}\alpha,{\star}\alpha\rangle\!\rangle
}[/math] for [math]\displaystyle{ \alpha\in\Omega^1(M) }[/math] ( Hodge star preserves [math]\displaystyle{ 1 }[/math]-form norm )
- [math]\displaystyle{
{\star} \mathbf{1} = \mathbf{det}
}[/math] ( Hodge dual of constant function 1 is the volume form )
Co-differential operator properties
- [math]\displaystyle{
\delta\circ\delta = 0
}[/math] ( nilpotent )
- [math]\displaystyle{
{\star}\delta=(-1)^kd{\star}
}[/math] and [math]\displaystyle{ {\star} d = (-1)^{k+1}\delta{\star} }[/math] ( Hodge adjoint to [math]\displaystyle{ d }[/math] )
- [math]\displaystyle{
\langle\!\langle d\alpha,\beta\rangle\!\rangle = \langle\!\langle \alpha,\delta\beta\rangle\!\rangle
}[/math] if [math]\displaystyle{ \partial M=0 }[/math] ( [math]\displaystyle{ \delta }[/math] adjoint to [math]\displaystyle{ d }[/math] )
- In general, [math]\displaystyle{ \int_M d\alpha \wedge \star \beta = \int_{\partial M} \alpha \wedge \star \beta + \int_M \alpha\wedge\star\delta\beta }[/math]
- [math]\displaystyle{
\delta f = 0
}[/math] for [math]\displaystyle{ f \in \Omega^0(M) }[/math]
Lie derivative properties
- [math]\displaystyle{
d\circ\mathcal{L}_X = \mathcal{L}_X\circ d
}[/math] ( commutative with [math]\displaystyle{ d }[/math] )
- [math]\displaystyle{
\iota_X \circ\mathcal{L}_X = \mathcal{L}_X\circ \iota_X
}[/math] ( commutative with [math]\displaystyle{ \iota_X }[/math] )
- [math]\displaystyle{
\mathcal{L}_X(\iota_Y\alpha) = \iota_{[X,Y]}\alpha + \iota_Y\mathcal{L}_X\alpha
}[/math]
- [math]\displaystyle{
\mathcal{L}_X(\alpha\wedge\beta) = (\mathcal{L}_X\alpha)\wedge\beta + \alpha\wedge(\mathcal{L}_X\beta)
}[/math] ( Leibniz rule )
Exterior calculus identities
- [math]\displaystyle{
\iota_X({\star}\mathbf{1}) = {\star} X^{\flat}
}[/math]
- [math]\displaystyle{
\iota_X({\star}\alpha) = (-1)^k{\star}(X^{\flat}\wedge\alpha)
}[/math] if [math]\displaystyle{ \alpha\in\Omega^k(M) }[/math]
- [math]\displaystyle{
\iota_X(\phi^*\alpha)=\phi^*(\iota_{d\phi(X)}\alpha)
}[/math]
- [math]\displaystyle{
\nu,\mu\in\Omega^n(M), \mu \text{ non-zero } \ \Rightarrow \ \exist \ f\in\Omega^0(M): \ \nu=f\mu
}[/math]
- [math]\displaystyle{
X^{\flat}\wedge{\star} Y^{\flat} = g(X,Y)( {\star} \mathbf{1})
}[/math] ( bilinear form )
- [math]\displaystyle{
[X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y]] = 0
}[/math] ( Jacobi identity )
Dimensions
If [math]\displaystyle{ n=\dim M }[/math]
- [math]\displaystyle{
\dim\Omega^k(M) = \binom{n}{k}
}[/math] for [math]\displaystyle{ 0\leq k\leq n }[/math]
- [math]\displaystyle{
\dim\Omega^k(M) = 0
}[/math] for [math]\displaystyle{ k \lt 0, \ k \gt n }[/math]
If [math]\displaystyle{ X_1,\ldots,X_n\in \Gamma(TM) }[/math] is a basis, then a basis of [math]\displaystyle{ \Omega^k(M) }[/math] is
- [math]\displaystyle{
\{X_{\sigma(1)}^{\flat}\wedge\ldots\wedge X_{\sigma(k)}^{\flat} \ : \ \sigma\in S(k,n)\}
}[/math]
Exterior products
Let [math]\displaystyle{ \alpha, \beta, \gamma,\alpha_i\in \Omega^1(M) }[/math] and [math]\displaystyle{ X,Y,Z,X_i }[/math] be vector fields.
- [math]\displaystyle{
\alpha(X) = \det
\begin{bmatrix}
\alpha(X) \\
\end{bmatrix}
}[/math]
- [math]\displaystyle{
(\alpha\wedge\beta)(X,Y) = \det
\begin{bmatrix}
\alpha(X) & \alpha(Y) \\
\beta(X) & \beta(Y) \\
\end{bmatrix}
}[/math]
- [math]\displaystyle{
(\alpha\wedge\beta\wedge\gamma)(X,Y,Z) = \det
\begin{bmatrix}
\alpha(X) & \alpha(Y) & \alpha(Z) \\
\beta(X) & \beta(Y) & \beta(Z) \\
\gamma(X) & \gamma(Y) & \gamma(Z)
\end{bmatrix}
}[/math]
- [math]\displaystyle{
(\alpha_1\wedge\ldots\wedge\alpha_l)(X_1,\ldots,X_l) = \det
\begin{bmatrix}
\alpha_1(X_1) & \alpha_1(X_2) & \dots & \alpha_1(X_l) \\
\alpha_2(X_1) & \alpha_2(X_2) & \dots & \alpha_2(X_l) \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_l(X_1) & \alpha_l(X_2) & \dots & \alpha_l(X_l)
\end{bmatrix}
}[/math]
Projection and rejection
- [math]\displaystyle{
(-1)^k\iota_X{\star}\alpha = {\star}(X^{\flat}\wedge\alpha)
}[/math] ( interior product [math]\displaystyle{ \iota_X{\star} }[/math] dual to wedge [math]\displaystyle{ X^{\flat}\wedge }[/math] )
- [math]\displaystyle{
(\iota_X\alpha)\wedge{\star}\beta =\alpha\wedge{\star}(X^{\flat}\wedge\beta)
}[/math] for [math]\displaystyle{ \alpha\in\Omega^{k+1}(M),\beta\in\Omega^k(M) }[/math]
If [math]\displaystyle{ |X|=1, \ \alpha\in\Omega^k(M) }[/math], then
- [math]\displaystyle{ \iota_X\circ (X^{\flat}\wedge ):\Omega^k(M)\rightarrow\Omega^k(M) }[/math] is the projection of [math]\displaystyle{ \alpha }[/math] onto the orthogonal complement of [math]\displaystyle{ X }[/math].
- [math]\displaystyle{ (X^{\flat}\wedge )\circ \iota_X:\Omega^k(M)\rightarrow\Omega^k(M) }[/math] is the rejection of [math]\displaystyle{ \alpha }[/math], the remainder of the projection.
- thus [math]\displaystyle{ \iota_X \circ (X^{\flat}\wedge ) + (X^{\flat}\wedge)\circ\iota_X = \text{id} }[/math] ( projection–rejection decomposition )
Given the boundary [math]\displaystyle{ \partial M }[/math] with unit normal vector [math]\displaystyle{ N }[/math]
- [math]\displaystyle{ \mathbf{t}:=\iota_N\circ (N^{\flat}\wedge ) }[/math] extracts the tangential component of the boundary.
- [math]\displaystyle{ \mathbf{n}:=(\text{id}-\mathbf{t}) }[/math] extracts the normal component of the boundary.
Sum expressions
- [math]\displaystyle{
(d\alpha)(X_0,\ldots,X_k)=\sum_{0\leq j\leq k}(-1)^jd(\alpha(X_0,\ldots,\hat{X}_j,\ldots,X_k))(X_j) + \sum_{0\leq i \lt j\leq k}(-1)^{i+j}\alpha([X_i,X_j],X_0,\ldots,\hat{X}_i,\ldots,\hat{X}_j,\ldots,X_k)
}[/math]
- [math]\displaystyle{
(d\alpha)(X_1,\ldots,X_k) =\sum_{i=1}^k(-1)^{i+1}(\nabla_{X_i}\alpha)(X_1,\ldots,\hat{X}_i,\ldots,X_k)
}[/math]
- [math]\displaystyle{
(\delta\alpha)(X_1,\ldots,X_{k-1})=-\sum_{i=1}^n(\iota_{E_i}(\nabla_{E_i}\alpha))(X_1,\ldots,\hat{X}_i,\ldots,X_k)
}[/math] given a positively oriented orthonormal frame [math]\displaystyle{ E_1,\ldots,E_n }[/math].
- [math]\displaystyle{
(\mathcal{L}_Y\alpha)(X_1,\ldots,X_k) =(\nabla_Y\alpha)(X_1,\ldots,X_k) - \sum_{i=1}^k\alpha(X_1,\ldots,\nabla_{X_i}Y,\ldots,X_k)
}[/math]
Hodge decomposition
If [math]\displaystyle{ \partial M =\empty }[/math], [math]\displaystyle{ \omega\in\Omega^k(M) \Rightarrow \exists \alpha\in\Omega^{k-1}, \ \beta\in\Omega^{k+1}, \ \gamma\in\Omega^k(M), \ d\gamma=0, \ \delta\gamma = 0 }[/math] such that[citation needed]
- [math]\displaystyle{
\omega = d\alpha + \delta\beta + \gamma
}[/math]
If a boundaryless manifold [math]\displaystyle{ M }[/math] has trivial cohomology [math]\displaystyle{ H^k(M)=\{0\} }[/math], then any closed [math]\displaystyle{ \omega\in\Omega^k(M) }[/math] is exact. This is the case if M is contractible.
Relations to vector calculus
Identities in Euclidean 3-space
Let Euclidean metric [math]\displaystyle{ g(X,Y):=\langle X,Y\rangle = X\cdot Y }[/math].
We use [math]\displaystyle{
\nabla = \left( {\partial \over \partial x}, {\partial \over \partial y}, {\partial \over \partial z} \right)
}[/math] differential operator [math]\displaystyle{ \mathbb{R}^3 }[/math]
- [math]\displaystyle{
\iota_X\alpha = g(X,\alpha^{\sharp}) = X\cdot \alpha^{\sharp}
}[/math] for [math]\displaystyle{ \alpha\in\Omega^1(M) }[/math].
- [math]\displaystyle{
\mathbf{det}(X,Y,Z)=\langle X,Y\times Z\rangle = \langle X\times Y,Z\rangle
}[/math] ( scalar triple product )
- [math]\displaystyle{
X\times Y = ({\star}(X^{\flat}\wedge Y^{\flat}))^{\sharp}
}[/math] ( cross product )
- [math]\displaystyle{
\iota_X\alpha=-(X\times A)^{\flat}
}[/math] if [math]\displaystyle{ \alpha\in\Omega^2(M),\ A=({\star}\alpha)^{\sharp} }[/math]
- [math]\displaystyle{
X\cdot Y = {\star}(X^{\flat}\wedge {\star} Y^{\flat})
}[/math] ( scalar product )
- [math]\displaystyle{
\nabla f=(df)^{\sharp}
}[/math] ( gradient )
- [math]\displaystyle{
X\cdot\nabla f=df(X)
}[/math] ( directional derivative )
- [math]\displaystyle{
\nabla\cdot X = {\star} d {\star} X^{\flat} = -\delta X^{\flat}
}[/math] ( divergence )
- [math]\displaystyle{
\nabla\times X = ({\star} d X^{\flat})^{\sharp}
}[/math] ( curl )
- [math]\displaystyle{
\langle X,N\rangle\sigma = {\star} X^\flat
}[/math] where [math]\displaystyle{ N }[/math] is the unit normal vector of [math]\displaystyle{ \partial M }[/math] and [math]\displaystyle{ \sigma=\iota_{N}\mathbf{det} }[/math] is the area form on [math]\displaystyle{ \partial M }[/math].
- [math]\displaystyle{
\int_{\Sigma} d{\star} X^{\flat} = \int_{\partial\Sigma}{\star} X^{\flat} = \int_{\partial\Sigma}\langle X,N\rangle\sigma
}[/math] ( divergence theorem )
Lie derivatives
- [math]\displaystyle{
\mathcal{L}_X f =X\cdot \nabla f
}[/math] ( [math]\displaystyle{ 0 }[/math]-forms )
- [math]\displaystyle{
\mathcal{L}_X \alpha = (\nabla_X\alpha^{\sharp})^{\flat} +g(\alpha^{\sharp},\nabla X)
}[/math] ( [math]\displaystyle{ 1 }[/math]-forms )
- [math]\displaystyle{
{\star}\mathcal{L}_X\beta = \left( \nabla_XB - \nabla_BX + (\text{div}X)B \right)^{\flat}
}[/math] if [math]\displaystyle{ B=({\star}\beta)^{\sharp} }[/math] ( [math]\displaystyle{ 2 }[/math]-forms on [math]\displaystyle{ 3 }[/math]-manifolds )
- [math]\displaystyle{
{\star}\mathcal{L}_X\rho = dq(X)+(\text{div}X)q
}[/math] if [math]\displaystyle{ \rho={\star} q \in \Omega^0(M) }[/math] ( [math]\displaystyle{ n }[/math]-forms )
- [math]\displaystyle{
\mathcal{L}_X(\mathbf{det})=(\text{div}(X))\mathbf{det}
}[/math]
References
- ↑ Crane, Keenan; de Goes, Fernando; Desbrun, Mathieu; Schröder, Peter (21 July 2013). "Digital geometry processing with discrete exterior calculus". ACM SIGGRAPH 2013 Courses. pp. 1–126. doi:10.1145/2504435.2504442. ISBN 9781450323390.
- ↑ Schwarz, Günter (1995). Hodge Decomposition – A Method for Solving Boundary Value Problems. Springer. ISBN 978-3-540-49403-4.
- ↑ Cartan, Henri (26 May 2006). Differential forms (Dover ed.). Dover Publications. ISBN 978-0486450100.
- ↑ Bott, Raoul; Tu, Loring W. (16 May 1995). Differential forms in algebraic topology. Springer. ISBN 978-0387906133.
- ↑ Abraham, Ralph; J.E., Marsden; Ratiu, Tudor (6 December 2012). Manifolds, tensor analysis, and applications (2nd ed.). Springer-Verlag. ISBN 978-1-4612-1029-0.
- ↑ 6.0 6.1 Tu, Loring W. (2011). An introduction to manifolds (2nd ed.). New York: Springer. pp. 34, 233. ISBN 9781441974006. OCLC 682907530.
| Original source: https://en.wikipedia.org/wiki/Exterior calculus identities. Read more |