From HandWiki - Reading time: 3 min
In mathematics and mathematical physics, a factorization algebra is an algebraic structure first introduced by Beilinson and Drinfel'd in an algebro-geometric setting as a reformulation of chiral algebras,[1] and also studied in a more general setting by Costello to study quantum field theory.[2]
A factorization algebra is a prefactorization algebra satisfying some properties, similar to sheafs being a presheaf with extra conditions.
If is a topological space, a prefactorization algebra of vector spaces on is an assignment of vector spaces to open sets of , along with the following conditions on the assignment:
So resembles a precosheaf, except the vector spaces are tensored rather than (direct-)summed.
The category of vector spaces can be replaced with any symmetric monoidal category.
To define factorization algebras, it is necessary to define a Weiss cover. For an open set, a collection of opens is a Weiss cover of if for any finite collection of points in , there is an open set such that .
Then a factorization algebra of vector spaces on is a prefactorization algebra of vector spaces on so that for every open and every Weiss cover of , the sequence is exact. That is, is a factorization algebra if it is a cosheaf with respect to the Weiss topology.
A factorization algebra is multiplicative if, in addition, for each pair of disjoint opens , the structure map is an isomorphism.
While this formulation is related to the one given above, the relation is not immediate.
Let be a smooth complex curve. A factorization algebra on consists of
over .
Any associative algebra can be realized as a prefactorization algebra on . To each open interval , assign . An arbitrary open is a disjoint union of countably many open intervals, , and then set . The structure maps simply come from the multiplication map on . Some care is needed for infinite tensor products, but for finitely many open intervals the picture is straightforward.