In the theory of stochastic processes, a subdiscipline of probability theory, filtrations are totally ordered collections of subsets that are used to model the information that is available at a given point and therefore play an important role in the formalization of random (stochastic) processes.
Let [math]\displaystyle{ (\Omega, \mathcal A, P) }[/math] be a probability space and let [math]\displaystyle{ I }[/math] be an index set with a total order [math]\displaystyle{ \leq }[/math] (often [math]\displaystyle{ \N }[/math], [math]\displaystyle{ \R^+ }[/math], or a subset of [math]\displaystyle{ \mathbb R^+ }[/math]).
For every [math]\displaystyle{ i \in I }[/math] let [math]\displaystyle{ \mathcal F_i }[/math] be a sub-σ-algebra of [math]\displaystyle{ \mathcal A }[/math]. Then
is called a filtration, if [math]\displaystyle{ \mathcal F_k \subseteq \mathcal F_\ell }[/math] for all [math]\displaystyle{ k \leq \ell }[/math]. So filtrations are families of σ-algebras that are ordered non-decreasingly.[1] If [math]\displaystyle{ \mathbb F }[/math] is a filtration, then [math]\displaystyle{ (\Omega, \mathcal A, \mathbb F, P) }[/math] is called a filtered probability space.
Let [math]\displaystyle{ (X_n)_{n \in \N} }[/math] be a stochastic process on the probability space [math]\displaystyle{ (\Omega, \mathcal A, P) }[/math]. Let [math]\displaystyle{ \sigma(X_k \mid k \leq n) }[/math] denote the σ-algebra generated by the random variables [math]\displaystyle{ X_1, X_2, \dots, X_n }[/math]. Then
is a σ-algebra and [math]\displaystyle{ \mathbb F= (\mathcal F_n)_{n \in \N} }[/math] is a filtration.
[math]\displaystyle{ \mathbb F }[/math] really is a filtration, since by definition all [math]\displaystyle{ \mathcal F_n }[/math] are σ-algebras and
This is known as the natural filtration of [math]\displaystyle{ \mathcal A }[/math] with respect to [math]\displaystyle{ (X_n)_{n \in \N} }[/math].
If [math]\displaystyle{ \mathbb F= (\mathcal F_i)_{i \in I} }[/math] is a filtration, then the corresponding right-continuous filtration is defined as[2]
with
The filtration [math]\displaystyle{ \mathbb F }[/math] itself is called right-continuous if [math]\displaystyle{ \mathbb F^+ = \mathbb F }[/math].[3]
Let [math]\displaystyle{ (\Omega, \mathcal F, P) }[/math] be a probability space and let,
be the set of all sets that are contained within a [math]\displaystyle{ P }[/math]-null set.
A filtration [math]\displaystyle{ \mathbb F= (\mathcal F_i)_{i \in I} }[/math] is called a complete filtration, if every [math]\displaystyle{ \mathcal F_i }[/math] contains [math]\displaystyle{ \mathcal N_P }[/math]. This implies [math]\displaystyle{ (\Omega, \mathcal F_i, P) }[/math] is a complete measure space for every [math]\displaystyle{ i \in I. }[/math] (The converse is not necessarily true.)
A filtration is called an augmented filtration if it is complete and right continuous. For every filtration [math]\displaystyle{ \mathbb F }[/math] there exists a smallest augmented filtration [math]\displaystyle{ \tilde {\mathbb F} }[/math] refining [math]\displaystyle{ \mathbb F }[/math].
If a filtration is an augmented filtration, it is said to satisfy the usual hypotheses or the usual conditions.[3]
Original source: https://en.wikipedia.org/wiki/Filtration (probability theory).
Read more |