Finite algebra

From HandWiki - Reading time: 2 min

In abstract algebra, an R-algebra A is finite if it is finitely generated as an R-module. An R-algebra can be thought as a homomorphism of rings f:RA, in this case f is called a finite morphism if A is a finite R-algebra.[1]

The definition of finite algebra is related to that of algebras of finite type.

Finite morphisms in algebraic geometry

This concept is closely related to that of finite morphism in algebraic geometry; in the simplest case of affine varieties, given two affine varieties VAn, WAm and a dominant regular map ϕ:VW, the induced homomorphism of k-algebras ϕ:Γ(W)Γ(V) defined by ϕf=fϕ turns Γ(V) into a Γ(W)-algebra:

ϕ is a finite morphism of affine varieties if ϕ:Γ(W)Γ(V) is a finite morphism of k-algebras.[2]

The generalisation to schemes can be found in the article on finite morphisms.

References

See also





Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Finite_algebra
27 views | Status: cached on August 24 2024 00:18:02
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF