In category theory, a branch of mathematics, the formal criteria for adjoint functors are criteria for the existence of a left or right adjoint of a given functor.
One criterion is the following, which first appeared in Peter J. Freyd's 1964 book Abelian Categories,[1] an Introduction to the Theory of Functors:
Freyd's adjoint functor theorem[2] — Let be a functor between categories such that is complete. Then the following are equivalent (for simplicity ignoring the set-theoretic issues):
- G has a left adjoint.
- preserves all limits and for each object x in , there exist a set I and an I-indexed family of morphisms such that each morphism is of the form for some morphism .
Another criterion is:
Kan criterion for the existence of a left adjoint — Let be a functor between categories. Then the following are equivalent.
- G has a left adjoint.
- G preserves limits and, for each object x in , the limit exists in .[3]
- The right Kan extension of the identity functor along G exists and is preserved by G.[4][5][6]
Moreover, when this is the case then a left adjoint of G can be computed using the right Kan extension.[3]
See also
References
- ↑ Freyd 2003, Chapter 3. (pp.84–)
- ↑ Mac Lane 2013, Ch. V, § 6, Theorem 2.
- ↑ 3.0 3.1 Mac Lane 2013, Ch. X, § 1, Theorem 2.
- ↑ Mac Lane 2013, Ch. X, § 7, Theorem 2.
- ↑ Kelly 1982, Theorem 4.81
- ↑ Medvedev 1975, p. 675
Bibliography
- Mac Lane, Saunders (17 April 2013). Categories for the Working Mathematician. Springer Science & Business Media. ISBN 978-1-4757-4721-8. https://books.google.com/books?id=gfI-BAAAQBAJ.
- Borceux, Francis (1994). "Adjoint functors". Handbook of Categorical Algebra. pp. 96–131. doi:10.1017/CBO9780511525858.005. ISBN 978-0-521-44178-0.
- Leinster, Tom (2014), Basic Category Theory, doi:10.1017/CBO9781107360068, ISBN 978-1-107-04424-1
- Freyd, Peter (2003). "Abelian categories". Reprints in Theory and Applications of Categories (3): 23–164. http://www.tac.mta.ca/tac/reprints/articles/3/tr3.pdf.
- Kelly, Gregory Maxwell (1982), Basic concepts of enriched category theory, London Mathematical Society Lecture Note Series, 64, Cambridge University Press, Cambridge-New York, ISBN 0-521-28702-2, http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf
- Ulmer, Friedrich (1971). "The adjoint functor theorem and the Yoneda embedding". Illinois Journal of Mathematics 15 (3). doi:10.1215/ijm/1256052605.
- Medvedev, M. Ya. (1975). "Semiadjoint functors and Kan extensions". Siberian Mathematical Journal 15 (4): 674–676. doi:10.1007/BF00967444.
- Feferman, Solomon; Kreisel, G. (1969). "Set-Theoretical foundations of category theory". Reports of the Midwest Category Seminar III. Lecture Notes in Mathematics. 106. 3.3. Case study of current category theory: specific illustrations.. pp. 201–247. doi:10.1007/BFb0059148. ISBN 978-3-540-04625-7.
- Lane, Saunders Mac (1969). "Foundations for categories and sets". Category Theory, Homology Theory and their Applications II. Lecture Notes in Mathematics. 92. V THE ADJOINT FUNCTOR THEOREM. pp. 146–164. doi:10.1007/BFb0080770. ISBN 978-3-540-04611-0.
- Paré, Robert; Schumacher, Dietmar (1978). "Abstract families and the adjoint functor theorems, ch. IV The adjoint functor theorems". Indexed Categories and Their Applications. Lecture Notes in Mathematics. 661. pp. 1–125. doi:10.1007/BFb0061361. ISBN 978-3-540-08914-8. https://books.google.com/books?id=5X98CwAAQBAJ&pg=PA94.
Further reading
External links
 | Original source: https://en.wikipedia.org/wiki/Formal criteria for adjoint functors. Read more |