In mathematics, a Gassmann triple (or Gassmann-Sunada triple) is a groupG together with two faithful actions on setsX and Y, such that X and Y are not isomorphic as G-sets but every element of G has the same number of fixed points on X and Y. They were introduced by Fritz Gassmann in 1926.
Applications
Gassmann triples have been used to construct examples of pairs of mathematical objects with the same invariants that are not isomorphic, including arithmetically equivalent number fields and isospectral graphs and isospectral Riemannian manifolds.
Examples
The Fano plane. The two sets of the Gassmann triple are the 7 points and the 7 lines.
Bosma, Wieb; de Smit, Bart (2002), "On arithmetically equivalent number fields of small degree", in Kohel, David R.; Fieker, Claus, Algorithmic number theory (Sydney, 2002), Lecture Notes in Comput. Sci., 2369, Berlin, New York: Springer-Verlag, pp. 67–79, doi:10.1007/3-540-45455-1_6, ISBN978-3-540-43863-2
Gassmann, Fritz (1926), "Bemerkungen zur vorstehenden Arbeit von Hurwitz (Über Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitutionen seiner Gruppe)", Mathematische Zeitschrift (Springer Berlin / Heidelberg) 25: 665–675, doi:10.1007/BF01283860, ISSN0025-5874
Sunada, T. (1985), "Riemannian coverings and isospectral manifolds", Annals of Mathematics121 (1): 169–186, doi:10.2307/1971195
0.00
(0 votes)
Original source: https://en.wikipedia.org/wiki/Gassmann triple. Read more