From HandWiki - Reading time: 2 min
In topology, a branch of mathematics, a graph is a topological space which arises from a usual graph by replacing vertices by points and each edge by a copy of the unit interval , where is identified with the point associated to and with the point associated to . That is, as topological spaces, graphs are exactly the simplicial 1-complexes and also exactly the one-dimensional CW complexes.[1]
Thus, in particular, it bears the quotient topology of the set
under the quotient map used for gluing. Here is the 0-skeleton (consisting of one point for each vertex ), are the closed intervals glued to it, one for each edge , and is the disjoint union.[1]
The topology on this space is called the graph topology.
A subgraph of a graph is a subspace which is also a graph and whose nodes are all contained in the 0-skeleton of . is a subgraph if and only if it consists of vertices and edges from and is closed.[1]
A subgraph is called a tree if it is contractible as a topological space.[1] This can be shown equivalent to the usual definition of a tree in graph theory, namely a connected graph without cycles.