Head grammar (HG) is a grammar formalism introduced in Carl Pollard (1984)[1] as an extension of the context-free grammar class of grammars. Head grammar is therefore a type of phrase structure grammar, as opposed to a dependency grammar. The class of head grammars is a subset of the linear context-free rewriting systems.
One typical way of defining head grammars is to replace the terminal strings of CFGs with indexed terminal strings, where the index denotes the "head" word of the string. Thus, for example, a CF rule such as
Two fundamental operations are then added to all rewrite rules: wrapping and concatenation.
Wrapping is an operation on two headed strings defined as follows:
Let
Concatenation is a family of operations on n > 0 headed strings, defined for n = 1, 2, 3 as follows:
Let
And so on for
Head grammar rules are defined in terms of these two operations, with rules taking either of the forms
where
Head grammars are capable of generating the language
The derivation for "abcd" is thus:
Vijay-Shanker and Weir (1994)[2] demonstrate that linear indexed grammars, combinatory categorial grammar, tree-adjoining grammars, and head grammars are weakly equivalent formalisms, in that they all define the same string languages.
![]() | Original source: https://en.wikipedia.org/wiki/Head grammar.
Read more |