Short description: BIOS interrupt call for disk access
INT 13h is shorthand for BIOS interrupt call 13hex, the 20th interrupt vector in an x86-based (IBM PC-descended) computer system. The BIOS typically sets up a real modeinterrupt handler at this vector that provides sector-based hard disk and floppy disk read and write services using cylinder-head-sector (CHS) addressing. Modern PC BIOSes also include INT 13h extension functions, originated by IBM and Microsoft in 1992, that provide those same disk access services using 64-bit LBA addressing; with minor additions, these were quasi-standardized by Phoenix Technologies and others as the EDD (Enhanced Disk Drive) BIOS extensions.
INT is an x86 instruction that triggers a software interrupt, and 13hex is the interrupt number (as a hexadecimal value) being called.
Modern computers come with both BIOS INT 13h and UEFI functionality that provides the same services and more, with the exception of UEFI Class 3 that completely removes CSM thus lacks INT 13h and other interrupts. Typically, UEFI drivers use LBA-addressing instead of CHS-addressing.
Under real mode operating systems, such as DOS, calling INT 13h would jump into the computer's ROM-BIOS code for low-level disk services, which would carry out physical sector-based disk read or write operations for the program. In DOS, it serves as the low-level interface for the built-in block device drivers for hard disks and floppy disks. This allows INT 25h and INT 26h to provide absolute disk read/write functions for logical sectors to the FATfile system driver in the DOS kernel, which handles file-related requests through DOS API (INT 21h) functions.
Under protected mode operating systems, such as Microsoft Windows NT derivatives (e.g. NT4, 2000, XP, and Server 2003) and Linux with dosemu, the OS intercepts the call and passes it to the operating system's native disk I/O mechanism. Windows 9x and Windows for Workgroups 3.11 also bypass BIOS routines when using 32-bit Disk Access. Besides performing low-level disk access, INT 13h calls and related BIOS data structures also provide information about the types and capacities of disks (or other DASD devices) attached to the system; when a protected-mode OS boots, it may use that information from the BIOS to enumerate disk hardware so that it (the OS) can load and configure appropriate disk I/O drivers.
The original BIOS real-mode INT 13h interface supports drives of sizes up to about 8 GB using what is commonly referred to as physical CHS addressing. This limit originates from the hardware interface of the IBM PC/XT disk hardware. The BIOS used the cylinder-head-sector (CHS) address given in the INT 13h call, and transferred it directly to the hardware interface. A lesser limit, about 504 MB, was imposed by the combination of CHS addressing limits used by the BIOS and those used by ATA hard disks, which are dissimilar. When the CHS addressing limits of both the BIOS and ATA are combined (i.e. when they are applied simultaneously), the number of 512-byte sectors that can be addressed represent a total of about 504 MB.
The 504 MB limit was overcome using CHS translation, a technique by which the BIOS would simulate a fictitious CHS geometry at the INT 13h interface, while communicating with the ATA drive using its native logical CHS geometry. (By the time the 504 MB barrier was being approached, ATA disks had long before ceased to present their real physical geometry parameters at the external ATA interface.) Translation allows the BIOS, still using CHS addressing, to effectively address ATA disks with sizes up to 8064 MB, the native capacity of the BIOS CHS interface alone. (The ATA interface has a much larger native CHS addressing capacity, so once the "interference" of the CHS limits of BIOS and ATA was resolved by addressing, only the smaller limitation of the BIOS was significant.) CHS translation is sometimes referred to as logical CHS addressing, but that is actually a misnomer since by the time of this BIOS development, ATA CHS addresses were already logical, not physical. The 8064 MB limit originates from a combination of the register value based calling convention used in the INT 13h interface and the goal of maintaining backward compatibility—dictating that the format or size of CHS addresses passed to INT 13h could not be changed to add more bits to one of the fields, e.g. the Cylinder-number field. This limit uses 1024 cylinders, 256 heads, 63 sectors, and 512 byte blocks, allowing exactly 7.875 GiB of addressing (1024 × 256 × 63 × 512 bytes). There were briefly a number of BIOSes that offered incompatible versions of this interface—for example, AWARD AT BIOS and AMI 386sx BIOS have been extended to handle up to 4096 cylinders by placing bits 10 and 11 of the cylinder number into bits 6 and 7 of register DH.
All versions of MS-DOS, (including MS-DOS 7 and Windows 95) have a bug which prevents booting disk drives with 256 heads (register value 0xFF), so many modern BIOSes provide CHS translation mappings with at most 255 (0xFE) heads,[1][2] thus reducing the total addressable space to exactly 8032.5 MiB (approx 7.844 GiB).[3]
To support addressing of even larger disks, an interface known as INT 13h Extensions was introduced by IBM and Microsoft, then later re-published and slightly extended by Phoenix Technologies as part of BIOS Enhanced Disk Drive Services (EDD).[4][5] It defines new functions within the INT 13h service, all having function numbers greater than 40h, that use 64-bit logical block addressing (LBA), which allows addressing up to 8 ZiB. (An ATA drive can also support 28-bit or 48-bit LBA which allows up to 128 GiB or 128 PiB respectively, assuming a 512-byte sector/block size). This is a "packet" interface, because it uses a pointer to a packet of information rather than the register based calling convention of the original INT 13h interface. This packet is a very simple data structure that contains an interface version, data size, and LBAs. For software backward-compatibility, the extended functions are implemented alongside the original CHS functions, and calls to functions from both sets can be intermixed, even for the same drive, with the caveat that the CHS functions cannot reach past the first 8064 MB of the disk.
Some cache drivers flush their buffers when detecting that DOS is bypassed by directly issuing INT 13h from applications. A dummy read via INT 13h can be used as one of several methods to force cache flushing for unknown caches (e.g. before rebooting).[1][2]
Set Media Type For Format (used by DOS versions <= 3.1)
AH = 18h
FD
Set Media Type For Format (used by DOS versions >= 3.2)
AH = 19h
Park Heads
AH = 41h
EXT
Test Whether Extensions Are Available
AH = 42h
EXT
Read Sectors From Drive
AH = 43h
EXT
Write Sectors To Drive
AH = 44h
EXT
Verify Sectors
AH = 45h
EXT
Lock/Unlock Drive
AH = 46h
EXT
Eject Drive
AH = 47h
EXT
Move Drive Head To Sector
AH = 48h
EXT
Read Drive Parameters
AH = 49h
EXT
Detect Media Change
AH = 4Bh
EXT
Get Drive Emulation Type
If the second column is empty then the function may be used both for floppy and hard disk.
FD: for floppy disk only.
HD: for hard disk only.
PS/2: for hard disk on PS/2 system only.
EXT: part of the INT 13h Extensions which were written in the 1990s to support hard drives with more than 8 GB.
INT 13h AH=00h: Reset Disk System
Parameters
AH
00h
DL
Drive (bit 7 set means reset both hard and floppy disks)
Results
CF
Set on error
AH
Return Code
INT 13h AH=01h: Get Status of Last Drive Operation
Parameters
AH
01h
DL
Drive
Bit 7=0 for floppy drive, bit 7=1 for fixed drive
Results
AH
Return Code
00h
Success
01h
Invalid Command
02h
Cannot Find Address Mark
03h
Attempted Write On Write Protected Disk
04h
Sector Not Found
05h
Reset Failed
06h
Disk change line 'active'
07h
Drive parameter activity failed
08h
DMA overrun
09h
Attempt to DMA over 64kb boundary
0Ah
Bad sector detected
0Bh
Bad cylinder (track) detected
0Ch
Media type not found
0Dh
Invalid number of sectors
0Eh
Control data address mark detected
0Fh
DMA out of range
10h
CRC/ECC data error
11h
ECC corrected data error
20h
Controller failure
40h
Seek failure
80h
Drive timed out, assumed not ready
AAh
Drive not ready
BBh
Undefined error
CCh
Write fault
E0h
Status error
FFh
Sense operation failed
CF
Set On Error, Clear If No Error
INT 13h AH=02h: Read Sectors From Drive
Parameters
AH
02h
AL
Sectors To Read Count
CH
Cylinder
CL
Sector
DH
Head
DL
Drive
ES:BX
Buffer Address Pointer
Results
CF
Set On Error, Clear If No Error
AH
Return Code
AL
Actual Sectors Read Count
Remarks
Register CX contains both the cylinder number (10 bits, possible values are 0 to 1023)
and the sector number (6 bits, possible values are 1 to 63). Cylinder and Sector bits are numbered below:
CX := ( ( cylinder and 255 ) shl 8 ) or ( ( cylinder and 768 ) shr 2 ) or sector;
cylinder := ( (CX and $FF00) shr 8 ) or ( (CX and $C0) shl 2)
sector := CX and 63;
Addressing of Buffer should guarantee that the complete buffer is inside the given segment,
i.e. ( BX + size_of_buffer ) <= 10000h.
Otherwise the interrupt may fail with some BIOS or hardware versions.
Example
Assume you want to read 16 sectors (= 2000h bytes) and your buffer starts
at memory address 4FF00h. Utilizing memory segmentation, there are different ways to calculate the register values, e.g.:
ES = segment = 4F00h
BX = offset = 0F00h
sum = memory address = 4FF00h
would be a good choice because 0F00h + 2000h = 2F00h <= 10000h
ES = segment = 4000h
BX = offset = FF00h
sum = memory address = 4FF00h
would not be a good choice because FF00h + 2000h = 11F00h > 10000h
Function 02h of interrupt 13h may only read sectors of the first 16,450,560 sectors
of your hard drive, to read sectors beyond the 8 GB limit you should use function 42h
of INT 13h Extensions. Another alternate may be DOS interrupt 25h which reads sectors
within a partition.
Code Example
[ORG 7c00h] ; code starts at 7c00h
xor ax, ax ; make sure ds is set to 0
mov ds, ax
cld
; start putting in values:
mov ah, 2h ; int13h function 2
mov al, 63 ; we want to read 63 sectors
mov ch, 0 ; from cylinder number 0
mov cl, 2 ; the sector number 2 - second sector (starts from 1, not 0)
mov dh, 0 ; head number 0
xor bx, bx
mov es, bx ; es should be 0
mov bx, 7e00h ; 512bytes from origin address 7c00h
int 13h
jmp 7e00h ; jump to the next sector
; to fill this sector and make it bootable:
times 510-($-$$) db 0
dw 0AA55h
After this code section (which the asm file should start with), you may write code and it will be loaded to memory and executed.
Notice how we didn't change dl (the drive). That is because when the computer first loads up, dl is set to the number of the drive that was booted, so assuming we want to read from the drive we booted from, there is no need to change dl.
INT 13h AH=03h: Write Sectors To Drive
Parameters
AH
03h
AL
Sectors To Write Count
CH
Track
CL
Sector
DH
Head
DL
Drive
ES:BX
Buffer Address Pointer
Results
CF
Set On Error, Clear If No Error
AH
Return Code
AL
Actual Sectors Written Count
INT 13h AH=04h: Verify Sectors From Drive
Parameters
AH
04h
AL
Sectors To Verify Count
CH
Track
CL
Sector
DH
Head
DL
Drive
ES:BX
Buffer Address Pointer
Results
CF
Set On Error, Clear If No Error
AH
Return Code
AL
Actual Sectors Verified Count
INT 13h AH=05h: Format Track
Parameters
AH
05h
AL
Sectors To Format Count
CH
Track
CL
Sector
DH
Head
DL
Drive
ES:BX
Buffer Address Pointer
4-byte address field (applies to PC/XT 286,AT, PS/1 and PS/2)
pointer to drive parameter table (only for floppies)
Remarks
Logical values of function 08h may/should differ from physical CHS values of function 48h.
Result register CX contains both cylinders and sector/track values, see remark of function 02h.
INT 13h AH=09h: Init Drive Pair Characteristics
Parameters
AH
09h
DL
Drive
Results
CF
Set On Error, Clear If No Error
AH
Return Code
INT 13h AH=0Ah: Read Long Sectors From Drive
The only difference between this function and function 02h (see above) is that function 0Ah reads 516 bytes per sector
instead of only 512. The last 4 bytes contains the Error Correction Code (ECC), a checksum of sector data.
number of sectors to be read, (some Phoenix BIOSes are limited to a maximum of 127 sectors)
04h..07h
4 bytes
segment:offset pointer to the memory buffer to which sectors will be transferred (note that x86 is little-endian: if declaring the segment and offset separately, the offset must be declared before the segment)
08h..0Fh
8 bytes
absolute number of the start of the sectors to be read (1st sector of drive has number 0) using logical block addressing (note that the lower half comes before the upper half)[9]
Results
Registers
Description
CF
Set On Error, Clear If No Error
AH
Return Code
As already stated with int 13h AH=02h, care must be taken to ensure that the complete buffer is inside the given segment, i.e. ( BX + size_of_buffer ) <= 10000h
INT 13h AH=43h: Extended Write Sectors to Drive
Parameters
Registers
Description
AH
43h = function number for extended write
AL
bit 0 = 0: close write check,
bit 0 = 1: open write check,
bit 1-7:reserved, set to 0
DL
drive index (e.g. 1st HDD = 80h)
DS:SI
segment:offset pointer to the DAP
Results
Registers
Description
CF
Set On Error, Clear If No Error
AH
Return Code
INT 13h AH=48h: Extended Read Drive Parameters
Parameters
Registers
Description
AH
48h = function number for extended_read_drive_parameters
DL
drive index (e.g. 1st HDD = 80h)
DS:SI
segment:offset pointer to Result Buffer, see below
Result Buffer
offset range
size
description
00h..01h
2 bytes
size of Result Buffer (set this to 1Eh)
02h..03h
2 bytes
information flags
04h..07h
4 bytes
physical number of cylinders = last index + 1 (because index starts with 0)
08h..0Bh
4 bytes
physical number of heads = last index + 1 (because index starts with 0)
0Ch..0Fh
4 bytes
physical number of sectors per track = last index (because index starts with 1)
10h..17h
8 bytes
absolute number of sectors = last index + 1 (because index starts with 0)
18h..19h
2 bytes
bytes per sector
1Ah..1Dh
4 bytes
optional pointer to Enhanced Disk Drive (EDD) configuration parameters which may be used for subsequent interrupt 13h Extension calls (if supported)
Results
Registers
Description
CF
Set On Error, Clear If No Error
AH
Return Code
Remark
Physical CHS values of function 48h may/should differ from logical values of function 08h.
INT 13h AH=4Bh: Get Drive Emulation Type
Parameters
Regsiters
Description
AH
4Bh = get drive emulation type
AL
01
DL
drive index (e.g. 1st HDD = 80h)
DS:SI
points to an empty structure for result . must be 13h in size
Results
Registers
Description
CF
Set On Error, Clear if No Error
AX
Return Code
DS:SI
Points to a specification structure
Specification Structure
Offset
Size (byte)
Description
00h
1
Size of packets in byte (13h)
01h
1
Boot Media Type :
Bits
0 - 3
0000b: No Emulation
0001b: 1.2M Floppy Disk
0010b: 1.44M Floppy Disk
0011b: 2.88M Floppy Disk
0100b: Hard Disk
4-5
Reserved
6
Image Contain ATAPI Driver
7
Image Contain SCSI Driver
02h
1
Drive Number (Drive Index)
03h
1
CD-ROM Controller Number
04h
4
Logical Block Address (LBA) of disk image to emulate
08h
2
Device Specification:
bit 0: Drive is slave instead of master
bits 7-0: LUN and PUN
0Ah
2
Segment Of 3K Buffer For Caching CD-ROMs Reads
0Ch
2
Initial Boot Image Segment Starting From 7c0h Segment