In field theory, a branch of mathematics, the isomorphism extension theorem is an important theorem regarding the extension of a field isomorphism to a larger field.
The theorem states that given any field [math]\displaystyle{ F }[/math], an algebraic extension field [math]\displaystyle{ E }[/math] of [math]\displaystyle{ F }[/math] and an isomorphism [math]\displaystyle{ \phi }[/math] mapping [math]\displaystyle{ F }[/math] onto a field [math]\displaystyle{ F' }[/math] then [math]\displaystyle{ \phi }[/math] can be extended to an isomorphism [math]\displaystyle{ \tau }[/math] mapping [math]\displaystyle{ E }[/math] onto an algebraic extension [math]\displaystyle{ E' }[/math] of [math]\displaystyle{ F' }[/math] (a subfield of the algebraic closure of [math]\displaystyle{ F' }[/math]).
The proof of the isomorphism extension theorem depends on Zorn's lemma.
Original source: https://en.wikipedia.org/wiki/Isomorphism extension theorem.
Read more |