Categories
  Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Karlsruhe metric

From HandWiki - Reading time: 1 min

In metric geometry, the Karlsruhe metric is a measure of distance that assumes travel is only possible along rays through the origin and circular arcs centered at the origin. The name alludes to the layout of the city of Karlsruhe, which has radial streets and circular avenues around a central point. This metric is also called Moscow metric.[1] The Karlsruhe distance between two points [math]\displaystyle{ d_k(p_1,p_2) }[/math] is given as

[math]\displaystyle{ d_k(p_1,p_2)= \begin{cases} \min(r_1,r_2) \cdot \delta(p_1,p_2) +|r_1-r_2|,&\text{if } 0\leq \delta(p_1,p_2)\leq 2\\ r_1+r_2,&\text{otherwise} \end{cases} }[/math]

where [math]\displaystyle{ (r_i,\varphi_i) }[/math] are the polar coordinates of [math]\displaystyle{ p_i }[/math] and [math]\displaystyle{ \delta(p_1,p_2)=\min(|\varphi_1-\varphi_2|,2\pi-|\varphi_1-\varphi_2|) }[/math] is the angular distance between the two points.

See also

Notes


External links





Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Karlsruhe_metric
16 views | Status: cached on July 23 2024 07:57:44
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF