List of books about polyhedra

From HandWiki - Reading time: 15 min

Short description: None

This is a list of books about polyhedra.

Polyhedral models

Cut-out kits

  • Jenkins, Gerald; Bear, Magdalen (1998). Paper Polyhedra in Colour. Tarquin. ISBN 1-899618-23-6.  Advanced Polyhedra 1: The Final Stellation, ISBN 1-899618-61-9. Advanced Polyhedra 2: The Sixth Stellation, ISBN 1-899618-62-7. Advanced Polyhedra 3: The Compound of Five Cubes, ISBN 978-1-899618-63-7.[1]
  • Jenkins, Gerald; Wild, Anne (2000). Mathematical Curiosities. Tarquin. ISBN 1-899618-35-X.  More Mathematical Curiosities, Tarquin, ISBN 1-899618-36-8. Make Shapes 1, ISBN 0-906212-00-6. Make Shapes 2, ISBN 0-906212-01-4.
  • Smith, A. G. (1986). Cut and Assemble 3-D Geometrical Shapes: 10 Models in Full Color. Dover.  Cut and Assemble 3-D Star Shapes, 1997. Easy-To-Make 3D Shapes in Full Color, 2000.
  • Torrence, Eve (2011). Cut and Assemble Icosahedra: Twelve Models in White and Color. Dover. 

Origami

  • Fuse, Tomoko (1990). Unit Origami: Multidimensional Transformations. Japan Publications. ISBN 978-0-87040-852-6. [2]
  • Gurkewitz, Rona; Arnstein, Bennett (1996). 3D Geometric Origami: Modular Origami Polyhedra. Dover. ISBN 9780486135601. [3] Multimodular Origami Polyhedra: Archimedeans, Buckyballs and Duality, 2002.[4] Beginner's Book of Modular Origami Polyhedra: The Platonic Solids, 2008. Modular Origami Polyhedra, also with Lewis Simon, 2nd ed., 1999.[5]
  • Mitchell, David (1997). Mathematical Origami: Geometrical Shapes by Paper Folding. Tarquin. ISBN 978-1-899618-18-7. [6]
  • Montroll, John (2009). Origami Polyhedra Design. A K Peters. ISBN 9781439871065. [7] A Plethora of Polyhedra in Origami, Dover, 2002.[8]

Other model-making

  • Cundy, H. M.; Rollett, A. P. (1952). Mathematical Models. Clarendon Press.  2nd ed., 1961. 3rd ed., Tarquin, 1981, ISBN 978-0-906212-20-2.[9]
  • Hilton, Peter; Pedersen, Jean (1988). Build Your Own Polyhedra. Addison-Wesley. [10]
  • Wenninger, Magnus (1971). Polyhedron Models. Cambridge University Press.  2nd ed., Polyhedron Models for the Classroom, 1974.[11] Spherical Models, 1979.[12] Dual Models, 1983.[13]

Mathematical studies

Introductory level and general audience

  • Akiyama, Jin; Matsunaga, Kiyoko (2015). Treks into Intuitive Geometry: The World of Polygons and Polyhedra. Springer. [14]
  • Alsina, Claudi (2017). The Thousand Faces of Geometric Beauty: The Polyhedra. Our Mathematical World. 23. National Geographic. ISBN 978-84-473-8929-2. 
  • Britton, Jill (2001). Polyhedra Pastimes. Dale Seymour Publishing. ISBN 0-7690-2782-2. [15]
  • Cromwell, Peter R. (1997). Polyhedra. Cambridge University Press. [16]
  • Fetter, Ann E. (1991). The Platonic Solids Activity Book. Key Curriculum Press. [17]
  • Holden, Alan (1971). Shapes, Space and Symmetry.  Dover, 1991.[18]
  • le Masne, Roger (2013) (in French). Les polyèdres, ou la beauté des mathématiques (4th ed.). Self-published. [19]
  • Miyazaki, Koji (1983) (in ja). Katachi to kūkan: Tajigen sekai no kiseki. Wiley.  Translated into English as An Adventure in Multidimensional Space: The Art and Geometry of Polygons, Polyhedra, and Polytopes, Wiley, 1986, and into German as Polyeder und Kosmos: Spuren einer mehrdimensionalen Welt, Vieweg, 1987.[20]
  • Pearce, Peter; Pearce, Susan (1979). Polyhedra Primer. Van Nostrand Reinhold. ISBN 978-0-442-26496-3. [21]
  • Pugh, Anthony (1976). Polyhedra: A Visual Approach. University of California Press. [22]
  • Radin, Dan (2008). The Platonic Solids Book. Self-published. [23]
  • Sutton, Daud (2002). Platonic & Archimedean Solids: The Geometry of Space. Wooden Books. ISBN 978-0802713865. [24]

Textbooks

  • Alexandrov, A. D. (2005). Convex Polyhedra. Springer.  Translated from 1950 Russian edition.[25]
  • Beck, Matthias; Robins, Sinai (2007). Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra. Undergraduate Texts in Mathematics. 154. Springer.  2nd ed., 2015, ISBN 978-1-4939-2968-9.[26]
  • Brøndsted, Arne (1983). An Introduction to Convex Polytopes. Graduate Texts in Mathematics. 90. Springer. [27]
  • Coxeter, H. S. M. (1948). Regular Polytopes. Methuen.  2nd ed., Macmillan, 1963. 3rd ed., Dover, 1973.[28]
  • Fejes Tóth, László (1964). Regular Figures. Pergamon. [29]
  • Grünbaum, Branko (1967). Convex Polytopes. Wiley.  2nd ed., Springer, 2003.[30]
  • Lyusternik, Lazar (1956) (in ru). Выпуклые фигуры и многогранники. Gosudarstv. Izdat. Tehn.-Teor. Lit..  Translated into English as Convex Figures and Polyhedra by T. Jefferson Smith, Dover, 1963 and by Donald L. Barnett, Heath, 1966.[31]
  • Roman, Tiberiu (1968) (in de). Reguläre und halbreguläre Polyeder. VEB Deutscher Verlag der Wissenschaften. [32]
  • Thomas, Rekha (2006). Lectures in Geometric Combinatorics. American Mathematical Society. [33]
  • Ziegler, Günter M. (1993). Lectures on Polytopes. Springer. [34]

Monographs and special topics

  • Coxeter, H. S. M.; du Val, P.; Flather, H. T.; Petrie, J. F. (1938). The Fifty-Nine Icosahedra. University of Toronto Studies, Mathematical Series. 6. University of Toronto Press.  2nd ed., Springer, 1982. 3rd ed., Tarquin, 1999.[35]
  • Coxeter, H. S. M. (1974). Regular Complex Polytopes. Cambridge University Press.  2nd ed., 1991.[36]
  • Demaine, Erik; O'Rourke, Joseph (2007). Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press. [37]
  • Deza, Michel; Grishukhin, Viatcheslav; Shtogrin, Mikhail (2004). Scale-Isometric Polytopal Graphs in Hypercubes and Cubic Lattices: Polytopes in Hypercubes and [math]\displaystyle{ \mathbb{Z}_n }[/math]. London: Imperial College Press. doi:10.1142/9781860945489. ISBN 1-86094-421-3. [38]
  • Lakatos, Imre (1976). Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge University Press. [39]
  • McMullen, Peter (2020). Geometric Regular Polytopes. Encyclopedia of Mathematics and its Applications. 172. Cambridge University Press. [40]
  • McMullen, Peter; Schulte, Egon (2002). Abstract Regular Polytopes. Encyclopedia of Mathematics and its Applications. 92. Cambridge University Press. [41]
  • McMullen, Peter; Shephard, G. C. (1971). Convex Polytopes and the Upper Bound Conjecture. London Mathematical Society Lecture Note Series. 3. Cambridge University Press. [42]
  • Nef, Walter (1978) (in de). Beiträge zur Theorie der Polyeder: Mit Anwendungen in der Computergraphik. Herbert Lang. [43]
  • Rajwade, A. R. (2001). Convex Polyhedra with Regularity Conditions and Hilbert's Third Problem. Texts and Readings in Mathematics. 21. Hindustan Book Agency. [44]
  • Richter-Gebert, Jürgen (1996). Realization Spaces of Polytopes. Lecture Notes in Mathematics. 1643. Springer. [45]
  • Stewart, B. M. (1970). Adventures Among the Toroids. Self-published.  2nd ed., 1980.[46]
  • Wachman, Avraham; Burt, Michael; Kleinmann, M. (1974). Infinite Polyhedra. Technion.  2nd ed., 2005.[47]
  • Wu, Wen-tsün (1965). A Theory of Imbedding, Immersion, and Isotopy of Polytopes in a Euclidean Space. Science Press. [48]
  • Zalgaller, Viktor A. (1969). Convex Polyhedra with Regular Faces. Consultants Bureau.  Translated and corrected from Zalgaller, V. A. (1967) (in ru). Выпуклые многогранники с правильными гранями. Zapiski Naučnyh Seminarov Leningradskogo Otdelenija Matematičeskogo Instituta im. V. A. Steklova Akademii Nauk SSSR (LOMI). 2. Nauka. http://mi.mathnet.ru/znsl1408. [49]
  • Zhizhin, Gennadiy Vladimirovich (2022). The Classes of Higher Dimensional Polytopes in Chemical, Physical, and Biological Systems. Advances in Chemical and Materials Engineering. IGI Global. ISBN 9781799883760. 

Edited volumes

  • Avis, David; Bremner, David; Deza, Antoine, eds (2009). Polyhedral Computation. CRM Proceedings and Lecture Notes. 48. American Mathematical Society. 
  • Gabriel, Jean-François, ed (1997). Beyond the Cube: The Architecture of Space Frames and Polyhedra. Wiley. [50]
  • Kalai, Gil; Ziegler, Günter M., eds (2012). Polytopes - Combinatorics and Computation. DMV Seminar. 29. Springer. 
  • Senechal, Marjorie; Fleck, G., eds (1988). Shaping Space: A Polyhedral Approach. Birkhauser. ISBN 0-8176-3351-0.  2nd ed., Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination, Springer, 2013.[51]

History

Early works

Listed in chronological order, and including some works shorter than book length:

Books about historical topics

  • Andrews, Noam (2022). The Polyhedrists: Art and Geometry in the Long Sixteenth Century. MIT Press. [56]
  • Davis, Margaret Daly (1977). Piero della Francesca's Mathematical Treatises: The "Trattato d'abaco" and "Libellus de quinque corporibus regularibus". Longo. [57]
  • Dézarnaud-Dandine, Christine; Sevin, Alain (2009) (in fr). Histoire des polyèdres: Quand la nature est géomètre. Vuibert. 
  • Federico, Pasquale Joseph (1984). Descartes on Polyhedra: A Study of the "De solidorum elementis". Sources in the History of Mathematics and Physical Sciences. 4. Springer. [58]
  • Richeson, D. S. (2008). Euler's Gem: The Polyhedron Formula and the Birth of Topology. Princeton University Press. [59]
  • Sanders, Philip Morris (1990). The Regular Polyhedra in Renaissance Science and Philosophy. Warburg Institute, University of London. 
  • Wade, David (2012). Fantastic Geometry: Polyhedra and the Artistic Imagination in the Renaissance. Squeeze Press. [60]

References

  1. Neal, David (March 1987). "Tarquin Polyhedra (review of Paper Polyhedra in Colour)". Mathematics in School 16 (2): 47. 
  2. "Science News Books". Science News 144 (21): 335–350. November 20, 1993.  Includes a brief review of Unit Origami: Multidimensional Transformations on p. 350.
  3. Reviews of 3D Geometric Origami: Modular Origami Polyhedra:
    • Plummer, Robert (December 1996). "none". The Mathematics Teacher 89 (9): 782. 
    • Barnette, David (1997). "none". Mathematical Reviews. 
    • Cannon, Mary Ellen (May 1997). "none". Mathematics Teaching in the Middle School 2 (6): 444–445. 
    • Blackwell, Joan (March 1999). "Review". School Science and Mathematics (Wiley) 99 (3): 160. doi:10.1111/j.1949-8594.1999.tb17467.x. ProQuest 195202376. https://www.proquest.com/docview/195202376. 
  4. Reviews of Multimodular Origami Polyhedra: Archimedeans, Buckyballs and Duality:
    • Murphey, Bonnie (January 2004). "none". Mathematics Teaching in the Middle School 9 (5): 288. 
    • Kessler, Charlotte (January 2004). "none". The Mathematics Teacher 97 (1): 78. 
  5. Reviews of Modular Origami Polyhedra (2nd ed.):
    • Böhm, Johannes. "none". zbMATH. 
    • Johnston, Christopher (September 2002). "none". Mathematics Teaching in the Middle School 8 (1): 59, 62. 
  6. Ollerton, Mike (January 1998). "Review of Mathematical Origami: Geometrical Shapes by Paper Folding". Mathematics in School 27 (1): 47. 
  7. Reviews of Origami Polyhedra Design:
  8. Short, Martha (March 2003). "Review of A Plethora of Polyhedra in Origami". Mathematics Teaching in the Middle School 8 (7): 380, 382. 
  9. Reviews of Mathematical Models:
    • Goldberg, M.. "Review of 1st ed.". Mathematical Reviews. 
    • Müller, H. R.. "Review of 1st ed." (in German). zbMATH.  2nd ed., Zbl 0095.38001.
    • ter Haar, D. (March 1953). "Briefly reviewed (review of 1st ed.)". The Scientific Monthly 76 (3): 188–189. 
    • Stone, Abraham (April 1953). "Review of 1st ed.". Scientific American 188 (4): 110. 
    • Dorrington, B. J. F. (September 1953). "Review of 1st ed.". The Mathematical Gazette 37 (321): 223. doi:10.2307/3608314. 
    • Ogilvy, C. Stanley (November 1959). "Review of 1st ed.". The Mathematics Teacher 52 (7): 577–578. 
    • Coxeter, H. S. M. (December 1962). "Review of 2nd ed.". The Mathematical Gazette 46 (358): 331. doi:10.2307/3611791. 
  10. Reviews of Build Your Own Polyhedra:
    • Schmidt, Don (February 1989). "none". The Mathematics Teacher 82 (2): 145. 
    • Leiva, Miriam A. (April 1989). "none". The Arithmetic Teacher 36 (8): 58–59. 
    • Jacob, Wiliam (October 1994). "none". The Mathematics Teacher 87 (7): 572. 
    • Provost, Mary D. (September–October 1995). "none". Mathematics Teaching in the Middle School 1 (6): 497–498. 
  11. Reviews of Polyhedron Models:
    • Peak, Philip (May 1972). "Review of 1st ed.". The Mathematics Teacher 65 (5): 446. 
    • Harker, David (May 12, 1972). "Planes, solids, and nolids". Science. New Series 176 (4035): 653–655. 
    • Quadling, D. A. (October 1972). "Review of 1st ed.". The Mathematical Gazette 56 (397): 256. doi:10.2307/3617024. 
    • Loeb, Arthur L. (Winter 1974). "Review of 1st ed.". Leonardo 7 (1): 82–83. doi:10.2307/1572763. 
    • Ando, Masue (October 1976). "Review of 2nd ed.". The Arithmetic Teacher 23 (6): 449. 
    • Bristol, James D. (December 1976). "Review of 2nd ed.". The Mathematics Teacher 69 (8): 698. 
  12. Reviews of Spherical Models:
    • Coxeter, H. S. M. (May–June 1980). "none". American Scientist 68 (3): 342. 
    • Ede, J. D. (March 1981). "none". The Mathematical Gazette 65 (431): 65. doi:10.2307/3617955. 
    • Brisson, David W. (Winter 1982). "none". Leonardo 15 (1): 83. doi:10.2307/1574381. 
  13. Reviews of Dual Models:
    • Ede, J. D. (December 1984). "none". The Mathematical Gazette 68 (446): 307. doi:10.2307/3616168. 
    • Senechal, Marjorie (March–April 1985). "none". American Scientist 73 (2): 205. 
  14. Reviews of Treks into Intuitive Geometry:
  15. Callahan, Deborah D. (September 2002). "Review of Polyhedra Pastimes". Mathematics Teaching in the Middle School 8 (1): 64. 
  16. Reviews of Polyhedra:
  17. Hayek, Linda M. (April 1994). "Review of The Platonic Solids Activity Book". The Mathematics Teacher 87 (4): 298. 
  18. Reviews of Shapes, Space and Symmetry:
    • Morrison, Philip (March 1972). "none". Scientific American 226 (3): 124–125. 
    • Peak, Philip (May 1972). "none". The Mathematics Teacher 65 (5): 447. 
    • Harker, David (May 12, 1972). "Planes, solids, and nolids". Science. New Series 176 (4035): 653–655. 
    • Hersee, John (December 1972). "none". The Mathematical Gazette 56 (398): 338–339. doi:10.2307/3617853. 
    • Moser, William (Winter 1973). "none". Leonardo 6 (1): 79. doi:10.2307/1572445. 
    • Ayoub, Ayoub B. (September 1992). "none". The Mathematics Teacher 85 (6): 494. 
    • Becker, Glenn (January 2016). "Review". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/shapes-space-and-symmetry. 
  19. Reviews of Les polyèdres:
  20. Grünbaum, Branko (January–February 1988). "Review of An Adventure in Multidimensional Space". American Scientist 76 (1): 94–95. 
  21. Reviews of Polyhedra Primer:
  22. Coxeter, H. S. M.. "Review of Polyhedra: A Visual Approach". Mathematical Reviews. 
  23. Ashbacher, Charles (November 2008). "Review of The Platonic Solids Book". MAA Reviews. Mathematical Association of America. https://www.maa.org/press/maa-reviews/the-platonic-solids-book. 
  24. Hoehn, Larry (February 2003). "Publications". The Mathematics Teacher 96 (2): 154. doi:10.5951/MT.96.2.0154.  Review of three books including Platonic & Archimedean Solids.
  25. Reviews of Convex Polyhedra:
  26. Reviews of Computing the Continuous Discretely:
  27. Reviews of An Introduction to Convex Polytopes:
    • Weinstein, J.. "none". zbMATH. 
    • Barnette, D. (1984). "none". Mathematical Reviews. 
    • Anderson, Ian (June 1984). "none". The Mathematical Gazette 68 (444): 146–147. doi:10.2307/3615937. 
    • Sallee, G. T. (March 1985). "none". SIAM Review 27 (1): 123–124. doi:10.1137/1027044. 
    • Lee, Carl W. (November 1986). "none". The American Mathematical Monthly 93 (9): 750–752. doi:10.2307/2322309. 
  28. Reviews of Regular Polytopes:
  29. Reviews of Regular Figures:
  30. Reviews of Convex Polytopes:
    • Sallee, G. T.. "Review of 1st ed.". MathSciNet. 
    • Jucovič, E.. "Review of 1st ed." (in German). zbMATH. 
    • Fenchel, Werner (Winter 1968). "Review of 1st ed.". American Scientist 56 (4): 476A–477A. 
    • Baxandall, P. R. (October 1969). "Review of 1st ed.". The Mathematical Gazette 53 (385): 342–343. doi:10.2307/3615008. 
    • Ehrig, G.. "Review of 2nd ed." (in German). zbMATH. 
    • Zvonkin, Alexander (2004). "Review of 2nd ed.". MathSciNet. 
    • Lord, Nick (March 2005). "Review of 2nd ed.". The Mathematical Gazette 89 (514): 164–166. doi:10.1017/S0025557200177307. 
    • McMullen, Peter (July 2005). "Review of 2nd ed.". Combinatorics, Probability and Computing 14 (4): 623–626. doi:10.1017/s0963548305226998. 
  31. Reviews of Convex Figures and Polyhedra:
    • Burau, W.. "Review of Russian edition" (in de). zbMATH. 
    • Kazarinoff, N. D.. "Review of Smith translation". MathSciNet. 
    • Eves, Howard (March 1965). "Review of Smith translation". Mathematics Magazine 38 (2): 113. doi:10.2307/2688443. 
  32. Jucovič, E.. "Review of Reguläre und halbreguläre Polyeder" (in de). MathSciNet. 
  33. Reviews of Lectures in Geometric Combinatorics:
  34. Reviews of Lectures on Polytopes:
    • Böhm, J.. "none". zbMATH. 
    • Bayer, Margaret M. (1996). "none". MathSciNet. 
    • McMullen, P. (February 1996). "none". Proceedings of the Edinburgh Mathematical Society 39 (1): 189–190. doi:10.1017/s0013091500022914. 
  35. Reviews of The Fifty-Nine Icosahedra:
    • Bottema, O.. "none". zbMATH. 
    • Miller, J. C. P. (February 1939). "none". The Mathematical Gazette 23 (253): 105–107. doi:10.2307/3605992. 
    • Cundy, H. Martyn (July 2002). "none". The Mathematical Gazette 86 (506): 360–361. doi:10.2307/3621904. 
  36. Reviews of Regular Complex Polytopes:
    • Jucovič, E.. "Review of 1st ed.". zbMATH. 
    • Guggenheimer, H. W.. "Review of 1st ed.". MathSciNet. 
    • Schwarzenberger, R. L. E. (October 1975). "Review of 1st ed.". The Mathematical Gazette 59 (409): 196–197. doi:10.2307/3617711. 
    • Grünbaum, Branko (March 1977). "Review of 1st ed.". Bulletin of the London Mathematical Society 9 (1): 119–120. doi:10.1112/blms/9.1.119b. 
    • Böhm, J.. "Review of 2nd ed.". zbMATH. 
    • McMullen, P. (1992). "Review of 2nd ed.". MathSciNet. 
    • Cannon, Lawrence O. (April 1992). "Review of 2nd ed.". The Mathematics Teacher 85 (4): 316. 
  37. Reviews of Geometric Folding Algorithms:
  38. Reviews of Scale-Isometric Polytopal Graphs:
    • Dawson, Robert. "none". zbMATH. 
    • Ding, Ren (2005). "none". MathSciNet. 
  39. Reviews of Proofs and Refutations:
  40. Review of Geometric Regular Polytopes:
    • Sahoo, Uma Kant. "none". zbMATH. 
  41. Reviews of Abstract Regular Polytopes:
    • Hartley, Michael Ian. "none". zbMATH. 
    • Martini, Horst (August 2003). "none". Bulletin of the London Mathematical Society 35 (5): 711–712. doi:10.1112/s0024609303219330. 
    • Živaljević, Rade (2004). "none". MathSciNet. 
  42. Reviews of Convex Polytopes and the Upper Bound Conjecture:
  43. Hertel, E.. "Review of Beiträge zur Theorie der Polyeder" (in de). MathSciNet. 
  44. Reviews of Convex Polyhedra with Regularity Conditions and Hilbert’s Third Problem:
  45. Reviews of Realization Spaces of Polytopes:
  46. Reviews of Adventures Among the Toroids:
  47. Wenninger, Magnus J. (Spring 1976). "Review of Infinite Polyhedra". Leonardo 9 (2): 158. doi:10.2307/1573140. 
  48. Reviews of A Theory of Imbedding, Immersion, and Isotopy of Polytopes in a Euclidean Space:
  49. Review of Convex Polyhedra with Regular Faces:
  50. Chilton, J. C. (April 2000). "Review of Beyond the Cube". Journal of the International Association for Shell and Spatial Structures 41 (1): 132. 
  51. Reviews of Shaping Space:
  52. Sanders, P. M. (1984). "Charles de Bovelles's treatise on the regular polyhedra (Paris, 1511)". Annals of Science 41 (6): 513–566. doi:10.1080/00033798400200401. 
  53. Friedman, Michael (2018). A History of Folding in Mathematics: Mathematizing the Margins. Science Networks. Historical Studies. 59. Birkhäuser. p. 71. doi:10.1007/978-3-319-72487-4. ISBN 978-3-319-72486-7. 
  54. Senechal, Marjorie; Galiulin, R. V. (1984). "An introduction to the theory of figures: the geometry of E. S. Fedorov" (in en,fr). Structural Topology (10): 5–22. 
  55. Schönflies, A. M.. "Review of Zur Morphologie der Polyeder" (in German). Jahrbuch über die Fortschritte der Mathematik. 
  56. Reviews of The Polyhedrists:
  57. Reviews of Piero della Francesca's Mathematical Treatises:
    • Tormey, Judith Farr (Spring 1979). "none". The Journal of Aesthetics and Art Criticism 37 (3): 389–390. doi:10.2307/430812. 
    • Rose, Paul Lawrence (1980). "none". Bibliothèque d'Humanisme et Renaissance 42 (2): 487–488. 
    • Maccagni, Carlo (1979). "none". Annali della Scuola Normale Superiore di Pisa. Classe di Lettere e Filosofia (Serie III) 9 (4): 1909–1911. 
  58. Reviews of Descartes on Polyhedra:
  59. Reviews of Euler's Gem:
  60. Prudence, Paul. "David Wade's 'Fantastic Geometry' – The Works of Wenzel Jamnitzer & Lorenz Stoer". Dataisnature. https://www.dataisnature.com/?p=2048. 




Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/List_of_books_about_polyhedra
34 views | Status: cached on August 10 2024 11:43:43
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF