Jenkins, Gerald; Bear, Magdalen (1998). Paper Polyhedra in Colour. Tarquin. ISBN1-899618-23-6.Advanced Polyhedra 1: The Final Stellation, ISBN 1-899618-61-9. Advanced Polyhedra 2: The Sixth Stellation, ISBN 1-899618-62-7. Advanced Polyhedra 3: The Compound of Five Cubes, ISBN 978-1-899618-63-7.[1]
Jenkins, Gerald; Wild, Anne (2000). Mathematical Curiosities. Tarquin. ISBN1-899618-35-X.More Mathematical Curiosities, Tarquin, ISBN 1-899618-36-8. Make Shapes 1, ISBN 0-906212-00-6. Make Shapes 2, ISBN 0-906212-01-4.
Smith, A. G. (1986). Cut and Assemble 3-D Geometrical Shapes: 10 Models in Full Color. Dover.Cut and Assemble 3-D Star Shapes, 1997. Easy-To-Make 3D Shapes in Full Color, 2000.
Torrence, Eve (2011). Cut and Assemble Icosahedra: Twelve Models in White and Color. Dover.
Origami
Fuse, Tomoko (1990). Unit Origami: Multidimensional Transformations. Japan Publications. ISBN978-0-87040-852-6.[2]
Gurkewitz, Rona; Arnstein, Bennett (1996). 3D Geometric Origami: Modular Origami Polyhedra. Dover. ISBN9780486135601.[3]Multimodular Origami Polyhedra: Archimedeans, Buckyballs and Duality, 2002.[4]Beginner's Book of Modular Origami Polyhedra: The Platonic Solids, 2008. Modular Origami Polyhedra, also with Lewis Simon, 2nd ed., 1999.[5]
Mitchell, David (1997). Mathematical Origami: Geometrical Shapes by Paper Folding. Tarquin. ISBN978-1-899618-18-7.[6]
Montroll, John (2009). Origami Polyhedra Design. A K Peters. ISBN9781439871065.[7]A Plethora of Polyhedra in Origami, Dover, 2002.[8]
Other model-making
Cundy, H. M.; Rollett, A. P. (1952). Mathematical Models. Clarendon Press. 2nd ed., 1961. 3rd ed., Tarquin, 1981, ISBN 978-0-906212-20-2.[9]
Hilton, Peter; Pedersen, Jean (1988). Build Your Own Polyhedra. Addison-Wesley.[10]
Wenninger, Magnus (1971). Polyhedron Models. Cambridge University Press. 2nd ed., Polyhedron Models for the Classroom, 1974.[11]Spherical Models, 1979.[12]Dual Models, 1983.[13]
Mathematical studies
Introductory level and general audience
Akiyama, Jin; Matsunaga, Kiyoko (2015). Treks into Intuitive Geometry: The World of Polygons and Polyhedra. Springer.[14]
Alsina, Claudi (2017). The Thousand Faces of Geometric Beauty: The Polyhedra. Our Mathematical World. 23. National Geographic. ISBN978-84-473-8929-2.
Cromwell, Peter R. (1997). Polyhedra. Cambridge University Press.[16]
Fetter, Ann E. (1991). The Platonic Solids Activity Book. Key Curriculum Press.[17]
Holden, Alan (1971). Shapes, Space and Symmetry. Dover, 1991.[18]
le Masne, Roger (2013) (in French). Les polyèdres, ou la beauté des mathématiques (4th ed.). Self-published.[19]
Miyazaki, Koji (1983) (in ja). Katachi to kūkan: Tajigen sekai no kiseki. Wiley. Translated into English as An Adventure in Multidimensional Space: The Art and Geometry of Polygons, Polyhedra, and Polytopes, Wiley, 1986, and into German as Polyeder und Kosmos: Spuren einer mehrdimensionalen Welt, Vieweg, 1987.[20]
Pearce, Peter; Pearce, Susan (1979). Polyhedra Primer. Van Nostrand Reinhold. ISBN978-0-442-26496-3.[21]
Pugh, Anthony (1976). Polyhedra: A Visual Approach. University of California Press.[22]
Radin, Dan (2008). The Platonic Solids Book. Self-published.[23]
Sutton, Daud (2002). Platonic & Archimedean Solids: The Geometry of Space. Wooden Books. ISBN978-0802713865.[24]
Textbooks
Alexandrov, A. D. (2005). Convex Polyhedra. Springer. Translated from 1950 Russian edition.[25]
Beck, Matthias; Robins, Sinai (2007). Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra. Undergraduate Texts in Mathematics. 154. Springer. 2nd ed., 2015, ISBN 978-1-4939-2968-9.[26]
Coxeter, H. S. M. (1948). Regular Polytopes. Methuen. 2nd ed., Macmillan, 1963. 3rd ed., Dover, 1973.[28]
Fejes Tóth, László (1964). Regular Figures. Pergamon.[29]
Grünbaum, Branko (1967). Convex Polytopes. Wiley. 2nd ed., Springer, 2003.[30]
Lyusternik, Lazar (1956) (in ru). Выпуклые фигуры и многогранники. Gosudarstv. Izdat. Tehn.-Teor. Lit.. Translated into English as Convex Figures and Polyhedra by T. Jefferson Smith, Dover, 1963 and by Donald L. Barnett, Heath, 1966.[31]
Roman, Tiberiu (1968) (in de). Reguläre und halbreguläre Polyeder. VEB Deutscher Verlag der Wissenschaften.[32]
Thomas, Rekha (2006). Lectures in Geometric Combinatorics. American Mathematical Society.[33]
Ziegler, Günter M. (1993). Lectures on Polytopes. Springer.[34]
Monographs and special topics
Coxeter, H. S. M.; du Val, P.; Flather, H. T.; Petrie, J. F. (1938). The Fifty-Nine Icosahedra. University of Toronto Studies, Mathematical Series. 6. University of Toronto Press. 2nd ed., Springer, 1982. 3rd ed., Tarquin, 1999.[35]
Coxeter, H. S. M. (1974). Regular Complex Polytopes. Cambridge University Press. 2nd ed., 1991.[36]
Demaine, Erik; O'Rourke, Joseph (2007). Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press.[37]
Deza, Michel; Grishukhin, Viatcheslav; Shtogrin, Mikhail (2004). Scale-Isometric Polytopal Graphs in Hypercubes and Cubic Lattices: Polytopes in Hypercubes and [math]\displaystyle{ \mathbb{Z}_n }[/math]. London: Imperial College Press. doi:10.1142/9781860945489. ISBN1-86094-421-3.[38]
Lakatos, Imre (1976). Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge University Press.[39]
McMullen, Peter (2020). Geometric Regular Polytopes. Encyclopedia of Mathematics and its Applications. 172. Cambridge University Press.[40]
McMullen, Peter; Schulte, Egon (2002). Abstract Regular Polytopes. Encyclopedia of Mathematics and its Applications. 92. Cambridge University Press.[41]
McMullen, Peter; Shephard, G. C. (1971). Convex Polytopes and the Upper Bound Conjecture. London Mathematical Society Lecture Note Series. 3. Cambridge University Press.[42]
Nef, Walter (1978) (in de). Beiträge zur Theorie der Polyeder: Mit Anwendungen in der Computergraphik. Herbert Lang.[43]
Rajwade, A. R. (2001). Convex Polyhedra with Regularity Conditions and Hilbert's Third Problem. Texts and Readings in Mathematics. 21. Hindustan Book Agency.[44]
Richter-Gebert, Jürgen (1996). Realization Spaces of Polytopes. Lecture Notes in Mathematics. 1643. Springer.[45]
Stewart, B. M. (1970). Adventures Among the Toroids. Self-published. 2nd ed., 1980.[46]
Wu, Wen-tsün (1965). A Theory of Imbedding, Immersion, and Isotopy of Polytopes in a Euclidean Space. Science Press.[48]
Zalgaller, Viktor A. (1969). Convex Polyhedra with Regular Faces. Consultants Bureau. Translated and corrected from Zalgaller, V. A. (1967) (in ru). Выпуклые многогранники с правильными гранями. Zapiski Naučnyh Seminarov Leningradskogo Otdelenija Matematičeskogo Instituta im. V. A. Steklova Akademii Nauk SSSR (LOMI). 2. Nauka. http://mi.mathnet.ru/znsl1408.[49]
Zhizhin, Gennadiy Vladimirovich (2022). The Classes of Higher Dimensional Polytopes in Chemical, Physical, and Biological Systems. Advances in Chemical and Materials Engineering. IGI Global. ISBN9781799883760.
Edited volumes
Avis, David; Bremner, David; Deza, Antoine, eds (2009). Polyhedral Computation. CRM Proceedings and Lecture Notes. 48. American Mathematical Society.
Gabriel, Jean-François, ed (1997). Beyond the Cube: The Architecture of Space Frames and Polyhedra. Wiley.[50]
Kalai, Gil; Ziegler, Günter M., eds (2012). Polytopes - Combinatorics and Computation. DMV Seminar. 29. Springer.
Senechal, Marjorie; Fleck, G., eds (1988). Shaping Space: A Polyhedral Approach. Birkhauser. ISBN0-8176-3351-0. 2nd ed., Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination, Springer, 2013.[51]
History
Early works
Listed in chronological order, and including some works shorter than book length:
Cowley, John Lodge (1758). An Appendix to Euclid's Elements in Seven Books, Containing Forty-two Copper-plates, In Which the Doctrine of Solids, Delivered in the XIth, XIIth, and XVth Books of Euclid, is Illustrated by New-invented Schemes Cut Out of Paste-Board. Watkins.
Poinsot, Louis (1810) (in fr). Mémoire sur les polygones et sur les polyèdres.
Marie, François-Charles-Michel (1835) (in fr). Géométrie stéréographique, ou reliefs des polyèdres. Paris.
Steinitz, Ernst (1934). Rademacher, Hans. ed (in de). Vorlesungen über die Theorie der Polyeder unter Einschluss der Elemente der Topologie.
Books about historical topics
Andrews, Noam (2022). The Polyhedrists: Art and Geometry in the Long Sixteenth Century. MIT Press.[56]
Davis, Margaret Daly (1977). Piero della Francesca's Mathematical Treatises: The "Trattato d'abaco" and "Libellus de quinque corporibus regularibus". Longo.[57]
Dézarnaud-Dandine, Christine; Sevin, Alain (2009) (in fr). Histoire des polyèdres: Quand la nature est géomètre. Vuibert.
Federico, Pasquale Joseph (1984). Descartes on Polyhedra: A Study of the "De solidorum elementis". Sources in the History of Mathematics and Physical Sciences. 4. Springer.[58]
Richeson, D. S. (2008). Euler's Gem: The Polyhedron Formula and the Birth of Topology. Princeton University Press.[59]
Sanders, Philip Morris (1990). The Regular Polyhedra in Renaissance Science and Philosophy. Warburg Institute, University of London.
Wade, David (2012). Fantastic Geometry: Polyhedra and the Artistic Imagination in the Renaissance. Squeeze Press.[60]
References
↑Neal, David (March 1987). "Tarquin Polyhedra (review of Paper Polyhedra in Colour)". Mathematics in School16 (2): 47.
↑"Science News Books". Science News144 (21): 335–350. November 20, 1993. Includes a brief review of Unit Origami: Multidimensional Transformations on p. 350.
↑Reviews of 3D Geometric Origami: Modular Origami Polyhedra:
Plummer, Robert (December 1996). "none". The Mathematics Teacher89 (9): 782.
↑Hoehn, Larry (February 2003). "Publications". The Mathematics Teacher96 (2): 154. doi:10.5951/MT.96.2.0154. Review of three books including Platonic & Archimedean Solids.
Schramm, Alfred (1980). "Vom Vermächtnis des Imre Lakatos". Philosophische Rundschau27 (1–2): 84–100.
Toulmin, Stephen (Winter 1980). "The intellectual authority and the social context of the scientific enterprise: Holton, Rescher And Lakatos". Minerva18 (4): 652–667.
↑Sanders, P. M. (1984). "Charles de Bovelles's treatise on the regular polyhedra (Paris, 1511)". Annals of Science41 (6): 513–566. doi:10.1080/00033798400200401.
↑Friedman, Michael (2018). A History of Folding in Mathematics: Mathematizing the Margins. Science Networks. Historical Studies. 59. Birkhäuser. p. 71. doi:10.1007/978-3-319-72487-4. ISBN978-3-319-72486-7.
↑Senechal, Marjorie; Galiulin, R. V. (1984). "An introduction to the theory of figures: the geometry of E. S. Fedorov" (in en,fr). Structural Topology (10): 5–22.