Categories
  Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Lommel function

From HandWiki - Reading time: 2 min

LommelS1.png
LommelS2.png

The Lommel differential equation, named after Eugen von Lommel, is an inhomogeneous form of the Bessel differential equation:

[math]\displaystyle{ z^2 \frac{d^2y}{dz^2} + z \frac{dy}{dz} + (z^2 - \nu^2)y = z^{\mu+1}. }[/math]

Solutions are given by the Lommel functions sμ,ν(z) and Sμ,ν(z), introduced by Eugen von Lommel (1880),

[math]\displaystyle{ s_{\mu,\nu}(z) = \frac{\pi}{2} \left[ Y_{\nu} (z) \! \int_{0}^{z} \!\! x^{\mu} J_{\nu}(x) \, dx - J_\nu (z) \! \int_{0}^{z} \!\! x^{\mu} Y_{\nu}(x) \, dx \right], }[/math]
[math]\displaystyle{ S_{\mu,\nu}(z) = s_{\mu,\nu}(z) + 2^{\mu-1} \Gamma\left(\frac{\mu + \nu + 1}{2}\right) \Gamma\left(\frac{\mu - \nu + 1}{2}\right) \left(\sin \left[(\mu - \nu)\frac{\pi}{2}\right] J_\nu(z) - \cos \left[(\mu - \nu)\frac{\pi}{2}\right] Y_\nu(z)\right), }[/math]

where Jν(z) is a Bessel function of the first kind and Yν(z) a Bessel function of the second kind.

See also

References

External links




Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Lommel_function
4 views | Status: cached on August 20 2024 13:32:25
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF