From HandWiki - Reading time: 2 min
In homological algebra, a branch of mathematics, a matrix factorization is a tool used to study infinitely long resolutions, generally over commutative rings.
One of the problems with non-smooth algebras, such as Artin algebras, are their derived categories are poorly behaved due to infinite projective resolutions. For example, in the ring
there is an infinite resolution of the
-module
where
Instead of looking at only the derived category of the module category, David Eisenbud[1] studied such resolutions by looking at their periodicity. In general, such resolutions are periodic with period
after finitely many objects in the resolution.
For a commutative ring
and an element
, a matrix factorization of
is a pair of
square matrices
such that
. This can be encoded more generally as a
graded
-module
with an endomorphism
such that
.
(1) For and there is a matrix factorization where for .
(2) If
and
, then there is a matrix factorization
where
definition
Given a regular local ring and an ideal generated by an -sequence, set and let
be a minimal -free resolution of the ground field. Then becomes periodic after at most steps. https://www.youtube.com/watch?v=2Jo5eCv9ZVY
page 18 of eisenbud article
This section needs expansion. You can help by adding to it. (February 2022) |
This section needs expansion. You can help by adding to it. (February 2022) |