In a healthy state, the endothelium exhibits wider blood vessels, tightly-controlled blood vessel permeability, and anti-thrombotic and anti-inflammatory properties. This balance ensures the smooth functioning of the vascular system.[4]
Stages of endothelial dysfunction in atherosclerosis of arteries
Endothelial dysfunction may be involved in the development of atherosclerosis[5][6][7] and may predate vascular pathology.[5][8] Endothelial dysfunction may also lead to increased adherence of monocytes and macrophages, as well as promoting infiltration of low-density lipoprotein (LDL) in the vessel wall.[9]Oxidized LDL is a hallmark feature of atherosclerosis,[10] by promoting the formation of foam cells, monocytechemotaxis, and platelet activation, leading to atheromatous plaque instability and ultimately to rupture.[11] Dyslipidemia and hypertension are well known to contribute to endothelial dysfunction,[12][13] and lowering blood pressure and LDL has been shown to improve endothelial function, particularly when lowered with ACE inhibitors, calcium channel blockers, and statins.[14] Steady laminar flow with high shear stress in blood vessels protects against atherosclerosis, whereas disturbed flow promotes atherosclerosis.[1]
Nitric oxide
Nitric oxide (NO) suppresses platelet aggregation, inflammation, oxidative stress, vascular smooth muscle cell migration and proliferation, and leukocyte adhesion.[6] A feature of endothelial dysfunction is the inability of arteries and arterioles to dilate fully in response to an appropriate stimulus, such as exogenous nitroglycerine,[5] that stimulates release of vasodilators from the endothelium like NO. Endothelial dysfunction is commonly associated with decreased NO bioavailability, which is due to impaired NO production by the endothelium or inactivation of NO by reactive oxygen species.[10][15] As a co-factor for nitric oxide synthase, tetrahydrobiopterin (BH4) supplementation has shown beneficial results for the treatment of endothelial dysfunction in animal experiments and clinical trials, although the tendency of BH4 to become oxidized to BH2 remains a problem.[15]
Testing and diagnosis
In the coronary circulation, angiography of coronary artery responses to vasoactive agents may be used to test for endothelial function, and venous occlusion plethysmography and ultrasonography are used to assess endothelial function of peripheral vessels in humans.[5]
A non-invasive method to measure endothelial dysfunction is % Flow-Mediated Dilation (FMD) as measured by Brachial Artery Ultrasound Imaging (BAUI).[16] Current measurements of endothelial function via FMD vary due to technical and physiological factors. Furthermore, a negative correlation between percent flow-mediated dilation and baseline artery size is recognised as a fundamental scaling problem, leading to biased estimates of endothelial function.[17]
A non-invasive, FDA-approved device for measuring endothelial function that works by measuring Reactive Hyperemia Index (RHI) is Itamar Medical's EndoPAT.[19][20] It has shown an 80% sensitivity and 86% specificity to diagnose coronary artery disease when compared against the gold standard, acetylcholine angiogram.[21] This result suggests that this peripheral test reflects the physiology of the coronary endothelium.
Since NO maintains low tone and high compliance of the small arteries at rest,[22] a reduction of age-dependent small artery compliance is a marker for endothelial dysfunction that is associated with both functional and structural changes in the microcirculation.[23] Small artery compliance or stiffness can be assessed simply and at rest and can be distinguished from large artery stiffness by use of pulsewave analysis.[24]
Endothelial dysfunction and stents
Stent implantation has been correlated with impaired endothelial function in several studies.[25]Sirolimus eluting stents were previously used because they showed low rates of in-stent restenosis, but further investigation showed that they often impair endothelial function in humans and worsen conditions.[25] One drug used to inhibit restenosis is iopromide-paclitaxel.[26]
COVID-19 complication in the lungs
COVID-19 can present with an acute lung injury manifestation that arises from endothelial dysfunction.[27]
Risk reduction
Treatment of high blood pressure and high levels of cholesterol in the blood may improve endothelial function in people taking statins (HMGCoA-reductase inhibitor), and reninangiotensin system inhibitors, such as ACE inhibitors and angiotensin II receptor antagonists.[28][29] Calcium channel blockers and selective beta 1 antagonists may also improve endothelial dysfunction.[14] Lifestyle modifications such as smoking cessation have also been shown to improve endothelial function and lower the risk of major cardiovascular events.[30]
↑ 5.05.15.25.3Maruhashi, T; Kihara, Y; Higashi, Y (2018). "Assessment of endothelium-independent vasodilation: From methodology to clinical perspectives". Journal of Hypertension36 (7): 1460–1467. doi:10.1097/HJH.0000000000001750. PMID29664811.
↑ 10.010.1"Oxidized LDL and NO synthesis--Biomarkers of endothelial dysfunction and ageing". Mechanisms of Ageing and Development151: 101–113. 2015. doi:10.1016/j.mad.2015.03.003. PMID25804383.
↑Konukoglu, Dildar; Uzun, Hafize (2017). "Endothelial Dysfunction and Hypertension". Hypertension: From basic research to clinical practice. Advances in Experimental Medicine and Biology. 956. pp. 511–540. doi:10.1007/5584_2016_90. ISBN978-3-319-44250-1.
↑ 15.015.1"Endothelial dysfunction, endothelial nitric oxide bioavailability, tetrahydrobiopterin, and 5-methyltetrahydrofolate in cardiovascular disease. Where are we with therapy?". Microvascular Research119: 7–12. 2018. doi:10.1016/j.mvr.2018.03.012. PMID29596860.
↑"Assessment of peripheral vascular endothelial function in the ambulatory setting". Vasc. Med.12 (1): 13–6. Feb 2007. doi:10.1177/1358863x06076227. PMID17451088.
↑"Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia". J Am Coll Cardiol44 (11): 2137–41. Dec 2004. doi:10.1016/j.jacc.2004.08.062. PMID15582310.
↑"Endothelial dysfunction and atherosclerosis: focus on novel therapeutic approaches". Recent Pat Cardiovasc Drug Discov7 (1): 21–32. Apr 2012. doi:10.2174/157489012799362386. PMID22280336.
↑Messner, Barbara; Bernhard, David (2014). "Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis". Arteriosclerosis, Thrombosis, and Vascular Biology34 (3): 509–515. doi:10.1161/ATVBAHA.113.300156. ISSN1524-4636. PMID24554606.
0.00
(0 votes)
Original source: https://en.wikipedia.org/wiki/Endothelial dysfunction. Read more