In mathematics, specifically in order theory and functional analysis, if [math]\displaystyle{ C }[/math] is a cone at the origin in a topological vector space [math]\displaystyle{ X }[/math] such that [math]\displaystyle{ 0 \in C }[/math] and if [math]\displaystyle{ \mathcal{U} }[/math] is the neighborhood filter at the origin, then [math]\displaystyle{ C }[/math] is called normal if [math]\displaystyle{ \mathcal{U} = \left[ \mathcal{U} \right]_C, }[/math] where [math]\displaystyle{ \left[ \mathcal{U} \right]_C := \left\{ [ U ]_C : U \in \mathcal{U} \right\} }[/math] and where for any subset [math]\displaystyle{ S \subseteq X, }[/math] [math]\displaystyle{ [S]_C := (S + C) \cap (S - C) }[/math] is the [math]\displaystyle{ C }[/math]-saturatation of [math]\displaystyle{ S. }[/math][1]
Normal cones play an important role in the theory of ordered topological vector spaces and topological vector lattices.
If [math]\displaystyle{ C }[/math] is a cone in a TVS [math]\displaystyle{ X }[/math] then for any subset [math]\displaystyle{ S \subseteq X }[/math] let [math]\displaystyle{ [S]_C := \left(S + C\right) \cap \left(S - C\right) }[/math] be the [math]\displaystyle{ C }[/math]-saturated hull of [math]\displaystyle{ S \subseteq X }[/math] and for any collection [math]\displaystyle{ \mathcal{S} }[/math] of subsets of [math]\displaystyle{ X }[/math] let [math]\displaystyle{ \left[ \mathcal{S} \right]_C := \left\{ \left[ S \right]_C : S \in \mathcal{S} \right\}. }[/math] If [math]\displaystyle{ C }[/math] is a cone in a TVS [math]\displaystyle{ X }[/math] then [math]\displaystyle{ C }[/math] is normal if [math]\displaystyle{ \mathcal{U} = \left[ \mathcal{U} \right]_C, }[/math] where [math]\displaystyle{ \mathcal{U} }[/math] is the neighborhood filter at the origin.[1]
If [math]\displaystyle{ \mathcal{T} }[/math] is a collection of subsets of [math]\displaystyle{ X }[/math] and if [math]\displaystyle{ \mathcal{F} }[/math] is a subset of [math]\displaystyle{ \mathcal{T} }[/math] then [math]\displaystyle{ \mathcal{F} }[/math] is a fundamental subfamily of [math]\displaystyle{ \mathcal{T} }[/math] if every [math]\displaystyle{ T \in \mathcal{T} }[/math] is contained as a subset of some element of [math]\displaystyle{ \mathcal{F}. }[/math] If [math]\displaystyle{ \mathcal{G} }[/math] is a family of subsets of a TVS [math]\displaystyle{ X }[/math] then a cone [math]\displaystyle{ C }[/math] in [math]\displaystyle{ X }[/math] is called a [math]\displaystyle{ \mathcal{G} }[/math]-cone if [math]\displaystyle{ \left\{ \overline{\left[ G \right]_C} : G \in \mathcal{G} \right\} }[/math] is a fundamental subfamily of [math]\displaystyle{ \mathcal{G} }[/math] and [math]\displaystyle{ C }[/math] is a strict [math]\displaystyle{ \mathcal{G} }[/math]-cone if [math]\displaystyle{ \left\{ \left[ G \right]_C : G \in \mathcal{G} \right\} }[/math] is a fundamental subfamily of [math]\displaystyle{ \mathcal{G}. }[/math][1] Let [math]\displaystyle{ \mathcal{B} }[/math] denote the family of all bounded subsets of [math]\displaystyle{ X. }[/math]
If [math]\displaystyle{ C }[/math] is a cone in a TVS [math]\displaystyle{ X }[/math] (over the real or complex numbers), then the following are equivalent:[1]
and if [math]\displaystyle{ X }[/math] is a vector space over the reals then we may add to this list:[1]
and if [math]\displaystyle{ X }[/math] is a locally convex space and if the dual cone of [math]\displaystyle{ C }[/math] is denoted by [math]\displaystyle{ X^{\prime} }[/math] then we may add to this list:[1]
and if [math]\displaystyle{ X }[/math] is an infrabarreled locally convex space and if [math]\displaystyle{ \mathcal{B}^{\prime} }[/math] is the family of all strongly bounded subsets of [math]\displaystyle{ X^{\prime} }[/math] then we may add to this list:[1]
and if [math]\displaystyle{ X }[/math] is an ordered locally convex TVS over the reals whose positive cone is [math]\displaystyle{ C, }[/math] then we may add to this list:
If [math]\displaystyle{ X }[/math] is a locally convex TVS, [math]\displaystyle{ C }[/math] is a cone in [math]\displaystyle{ X }[/math] with dual cone [math]\displaystyle{ C^{\prime} \subseteq X^{\prime}, }[/math] and [math]\displaystyle{ \mathcal{G} }[/math] is a saturated family of weakly bounded subsets of [math]\displaystyle{ X^{\prime}, }[/math] then[1]
If [math]\displaystyle{ X }[/math] is a Banach space, [math]\displaystyle{ C }[/math] is a closed cone in [math]\displaystyle{ X, }[/math], and [math]\displaystyle{ \mathcal{B}^{\prime} }[/math] is the family of all bounded subsets of [math]\displaystyle{ X^{\prime}_b }[/math] then the dual cone [math]\displaystyle{ C^{\prime} }[/math] is normal in [math]\displaystyle{ X^{\prime}_b }[/math] if and only if [math]\displaystyle{ C }[/math] is a strict [math]\displaystyle{ \mathcal{B} }[/math]-cone.[1]
If [math]\displaystyle{ X }[/math] is a Banach space and [math]\displaystyle{ C }[/math] is a cone in [math]\displaystyle{ X }[/math] then the following are equivalent:[1]
Suppose [math]\displaystyle{ L }[/math] is an ordered topological vector space. That is, [math]\displaystyle{ L }[/math] is a topological vector space, and we define [math]\displaystyle{ x \geq y }[/math] whenever [math]\displaystyle{ x - y }[/math] lies in the cone [math]\displaystyle{ L_+ }[/math]. The following statements are equivalent:[3]
If the topology on [math]\displaystyle{ X }[/math] is locally convex then the closure of a normal cone is a normal cone.[1]
Suppose that [math]\displaystyle{ \left\{ X_{\alpha} : \alpha \in A \right\} }[/math] is a family of locally convex TVSs and that [math]\displaystyle{ C_\alpha }[/math] is a cone in [math]\displaystyle{ X_{\alpha}. }[/math] If [math]\displaystyle{ X := \bigoplus_{\alpha} X_{\alpha} }[/math] is the locally convex direct sum then the cone [math]\displaystyle{ C := \bigoplus_{\alpha} C_\alpha }[/math] is a normal cone in [math]\displaystyle{ X }[/math] if and only if each [math]\displaystyle{ X_{\alpha} }[/math] is normal in [math]\displaystyle{ X_{\alpha}. }[/math][1]
If [math]\displaystyle{ X }[/math] is a locally convex space then the closure of a normal cone is a normal cone.[1]
If [math]\displaystyle{ C }[/math] is a cone in a locally convex TVS [math]\displaystyle{ X }[/math] and if [math]\displaystyle{ C^{\prime} }[/math] is the dual cone of [math]\displaystyle{ C, }[/math] then [math]\displaystyle{ X^{\prime} = C^{\prime} - C^{\prime} }[/math] if and only if [math]\displaystyle{ C }[/math] is weakly normal.[1] Every normal cone in a locally convex TVS is weakly normal.[1] In a normed space, a cone is normal if and only if it is weakly normal.[1]
If [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] are ordered locally convex TVSs and if [math]\displaystyle{ \mathcal{G} }[/math] is a family of bounded subsets of [math]\displaystyle{ X, }[/math] then if the positive cone of [math]\displaystyle{ X }[/math] is a [math]\displaystyle{ \mathcal{G} }[/math]-cone in [math]\displaystyle{ X }[/math] and if the positive cone of [math]\displaystyle{ Y }[/math] is a normal cone in [math]\displaystyle{ Y }[/math] then the positive cone of [math]\displaystyle{ L_{\mathcal{G}}(X; Y) }[/math] is a normal cone for the [math]\displaystyle{ \mathcal{G} }[/math]-topology on [math]\displaystyle{ L(X; Y). }[/math][5]
Original source: https://en.wikipedia.org/wiki/Normal cone (functional analysis).
Read more |