Normal form (dynamical systems)

From HandWiki - Reading time: 2 min

In mathematics, the normal form of a dynamical system is a simplified form that can be useful in determining the system's behavior. Normal forms are often used for determining local bifurcations in a system. All systems exhibiting a certain type of bifurcation are locally (around the equilibrium) topologically equivalent to the normal form of the bifurcation. For example, the normal form of a saddle-node bifurcation is

[math]\displaystyle{ \frac{\mathrm{d}x}{\mathrm{d}t} = \mu + x^2 }[/math]

where [math]\displaystyle{ \mu }[/math] is the bifurcation parameter. The transcritical bifurcation

[math]\displaystyle{ \frac{\mathrm{d}x}{\mathrm{d}t} = r \ln x + x - 1 }[/math]

near [math]\displaystyle{ x=1 }[/math] can be converted to the normal form

[math]\displaystyle{ \frac{\mathrm{d}u}{\mathrm{d}t} = \mu u - u^2 + O(u^3) }[/math]

with the transformation [math]\displaystyle{ u = x -1, \mu = r + 1 }[/math].[1]

See also canonical form for use of the terms canonical form, normal form, or standard form more generally in mathematics.

References

  1. Strogatz, Steven. "Nonlinear Dynamics and Chaos". Westview Press, 2001. p. 52.

Further reading





Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Normal_form_(dynamical_systems)
14 views | Status: cached on August 16 2024 22:32:21
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF