Categories
  Encyclosphere.org ENCYCLOREADER
  supported by EncyclosphereKSF

Parabolic Lie algebra

From HandWiki - Reading time: 1 min

In algebra, a parabolic Lie algebra [math]\displaystyle{ \mathfrak p }[/math] is a subalgebra of a semisimple Lie algebra [math]\displaystyle{ \mathfrak g }[/math] satisfying one of the following two conditions:

  • [math]\displaystyle{ \mathfrak p }[/math] contains a maximal solvable subalgebra (a Borel subalgebra) of [math]\displaystyle{ \mathfrak g }[/math];
  • the Killing perp of [math]\displaystyle{ \mathfrak p }[/math] in [math]\displaystyle{ \mathfrak g }[/math] is the nilradical of [math]\displaystyle{ \mathfrak p }[/math].

These conditions are equivalent over an algebraically closed field of characteristic zero, such as the complex numbers. If the field [math]\displaystyle{ \mathbb F }[/math] is not algebraically closed, then the first condition is replaced by the assumption that

  • [math]\displaystyle{ \mathfrak p\otimes_{\mathbb F}\overline{\mathbb F} }[/math] contains a Borel subalgebra of [math]\displaystyle{ \mathfrak g\otimes_{\mathbb F}\overline{\mathbb F} }[/math]

where [math]\displaystyle{ \overline{\mathbb F} }[/math] is the algebraic closure of [math]\displaystyle{ \mathbb F }[/math].

See also

Bibliography





Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Parabolic_Lie_algebra
3 views | Status: cached on September 23 2024 11:32:37
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF