In green, confocal parabolae opening upwards,
[math]\displaystyle{ 2y = \frac {x^2}{\sigma^2}-\sigma^2 }[/math] In red, confocal parabolae opening downwards,
[math]\displaystyle{ 2y =-\frac{x^2}{\tau^2}+\tau^2 }[/math]
Parabolic coordinates are a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal parabolas. A three-dimensional version of parabolic coordinates is obtained by rotating the two-dimensional system about the symmetry axis of the parabolas.
Parabolic coordinates have found many applications, e.g., the treatment of the Stark effect and the potential theory of the edges.
Two-dimensional parabolic coordinates
Two-dimensional parabolic coordinates [math]\displaystyle{ (\sigma, \tau) }[/math] are defined by the equations, in terms of Cartesian coordinates:
- [math]\displaystyle{
x = \sigma \tau
}[/math]
- [math]\displaystyle{
y = \frac{1}{2} \left( \tau^{2} - \sigma^{2} \right)
}[/math]
The curves of constant [math]\displaystyle{ \sigma }[/math] form confocal parabolae
- [math]\displaystyle{
2y = \frac{x^{2}}{\sigma^{2}} - \sigma^{2}
}[/math]
that open upwards (i.e., towards [math]\displaystyle{ +y }[/math]), whereas the curves of constant [math]\displaystyle{ \tau }[/math] form confocal parabolae
- [math]\displaystyle{
2y = -\frac{x^{2}}{\tau^{2}} + \tau^{2}
}[/math]
that open downwards (i.e., towards [math]\displaystyle{ -y }[/math]). The foci of all these parabolae are located at the origin.
The Cartesian coordinates [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] can be converted to parabolic coordinates by:
- [math]\displaystyle{
\sigma = \operatorname{sign}(x)\sqrt{\sqrt{x^{2} +y^{2}}-y}
}[/math]
- [math]\displaystyle{
\tau = \sqrt{\sqrt{x^{2} +y^{2}}+y}
}[/math]
Two-dimensional scale factors
The scale factors for the parabolic coordinates [math]\displaystyle{ (\sigma, \tau) }[/math] are equal
- [math]\displaystyle{
h_{\sigma} = h_{\tau} = \sqrt{\sigma^{2} + \tau^{2}}
}[/math]
Hence, the infinitesimal element of area is
- [math]\displaystyle{
dA = \left( \sigma^{2} + \tau^{2} \right) d\sigma d\tau
}[/math]
and the Laplacian equals
- [math]\displaystyle{
\nabla^{2} \Phi = \frac{1}{\sigma^{2} + \tau^{2}}
\left( \frac{\partial^{2} \Phi}{\partial \sigma^{2}} +
\frac{\partial^{2} \Phi}{\partial \tau^{2}} \right)
}[/math]
Other differential operators such as [math]\displaystyle{ \nabla \cdot \mathbf{F} }[/math]
and [math]\displaystyle{ \nabla \times \mathbf{F} }[/math] can be expressed in the coordinates [math]\displaystyle{ (\sigma, \tau) }[/math] by substituting
the scale factors into the general formulae
found in orthogonal coordinates.
Three-dimensional parabolic coordinates
Coordinate surfaces of the three-dimensional parabolic coordinates. The red paraboloid corresponds to τ=2, the blue paraboloid corresponds to σ=1, and the yellow half-plane corresponds to φ=-60°. The three surfaces intersect at the point
P (shown as a black sphere) with
Cartesian coordinates roughly (1.0, -1.732, 1.5).
The two-dimensional parabolic coordinates form the basis for two sets of three-dimensional orthogonal coordinates. The parabolic cylindrical coordinates are produced by projecting in the [math]\displaystyle{ z }[/math]-direction.
Rotation about the symmetry axis of the parabolae produces a set of
confocal paraboloids, the coordinate system of tridimensional parabolic coordinates. Expressed in terms of cartesian coordinates:
- [math]\displaystyle{
x = \sigma \tau \cos \varphi
}[/math]
- [math]\displaystyle{
y = \sigma \tau \sin \varphi
}[/math]
- [math]\displaystyle{
z = \frac{1}{2} \left(\tau^{2} - \sigma^{2} \right)
}[/math]
where the parabolae are now aligned with the [math]\displaystyle{ z }[/math]-axis,
about which the rotation was carried out. Hence, the azimuthal angle [math]\displaystyle{ \phi }[/math] is defined
- [math]\displaystyle{
\tan \varphi = \frac{y}{x}
}[/math]
The surfaces of constant [math]\displaystyle{ \sigma }[/math] form confocal paraboloids
- [math]\displaystyle{
2z = \frac{x^{2} + y^{2}}{\sigma^{2}} - \sigma^{2}
}[/math]
that open upwards (i.e., towards [math]\displaystyle{ +z }[/math]) whereas the surfaces of constant [math]\displaystyle{ \tau }[/math] form confocal paraboloids
- [math]\displaystyle{
2z = -\frac{x^{2} + y^{2}}{\tau^{2}} + \tau^{2}
}[/math]
that open downwards (i.e., towards [math]\displaystyle{ -z }[/math]). The foci of all these paraboloids are located at the origin.
The Riemannian metric tensor associated with this coordinate system is
- [math]\displaystyle{ g_{ij} = \begin{bmatrix} \sigma^2+\tau^2 & 0 & 0\\0 & \sigma^2+\tau^2 & 0\\0 & 0 & \sigma^2\tau^2 \end{bmatrix} }[/math]
Three-dimensional scale factors
The three dimensional scale factors are:
- [math]\displaystyle{ h_{\sigma} = \sqrt{\sigma^2+\tau^2} }[/math]
- [math]\displaystyle{ h_{\tau} = \sqrt{\sigma^2+\tau^2} }[/math]
- [math]\displaystyle{ h_{\varphi} = \sigma\tau }[/math]
It is seen that the scale factors [math]\displaystyle{ h_{\sigma} }[/math] and [math]\displaystyle{ h_{\tau} }[/math] are the same as in the two-dimensional case. The infinitesimal volume element is then
- [math]\displaystyle{
dV = h_\sigma h_\tau h_\varphi\, d\sigma\,d\tau\,d\varphi = \sigma\tau \left( \sigma^{2} + \tau^{2} \right)\,d\sigma\,d\tau\,d\varphi
}[/math]
and the Laplacian is given by
- [math]\displaystyle{
\nabla^2 \Phi = \frac{1}{\sigma^{2} + \tau^{2}}
\left[
\frac{1}{\sigma} \frac{\partial}{\partial \sigma}
\left( \sigma \frac{\partial \Phi}{\partial \sigma} \right) +
\frac{1}{\tau} \frac{\partial}{\partial \tau}
\left( \tau \frac{\partial \Phi}{\partial \tau} \right)\right] +
\frac{1}{\sigma^2\tau^2}\frac{\partial^2 \Phi}{\partial \varphi^2}
}[/math]
Other differential operators such as [math]\displaystyle{ \nabla \cdot \mathbf{F} }[/math]
and [math]\displaystyle{ \nabla \times \mathbf{F} }[/math] can be expressed in the coordinates [math]\displaystyle{ (\sigma, \tau, \phi) }[/math] by substituting
the scale factors into the general formulae
found in orthogonal coordinates.
See also
Bibliography
- Morse PM, Feshbach H (1953). Methods of Theoretical Physics, Part I. New York: McGraw-Hill. pp. 660. ISBN 0-07-043316-X.
- Margenau H, Murphy GM (1956). The Mathematics of Physics and Chemistry. New York: D. van Nostrand. pp. 185–186. https://archive.org/details/mathematicsofphy0002marg.
- Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill. pp. 180. ASIN B0000CKZX7.
- Sauer R, Szabó I (1967). Mathematische Hilfsmittel des Ingenieurs. New York: Springer Verlag. pp. 96.
- Zwillinger D (1992). Handbook of Integration. Boston, MA: Jones and Bartlett. pp. 114. ISBN 0-86720-293-9. Same as Morse & Feshbach (1953), substituting uk for ξk.
- Moon P, Spencer DE (1988). "Parabolic Coordinates (μ, ν, ψ)". Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd ed., 3rd print ed.). New York: Springer-Verlag. pp. 34–36 (Table 1.08). ISBN 978-0-387-18430-2.
External links
|
---|
Two dimensional | |
---|
Three dimensional | |
---|
| Original source: https://en.wikipedia.org/wiki/Parabolic coordinates. Read more |