Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena.[1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed. To compare a real situation (e.g. an aircraft) with a small-scale model it is necessary to keep the important characteristic numbers the same. Names and formulation of these numbers were standardized in ISO 31-12 and in ISO 80000-11.
vs. | Inertial | Viscous | Thermal | Mass |
---|---|---|---|---|
Inertial | vd | Re | Pe | PeAB |
Viscous | Re−1 | μ/ρ, ν | Pr | Sc |
Thermal | Pe−1 | Pr−1 | α | Le |
Mass | PeAB−1 | Sc−1 | Le−1 | D |
As a general example of how dimensionless numbers arise in fluid mechanics, the classical numbers in transport phenomena of mass, momentum, and energy are principally analyzed by the ratio of effective diffusivities in each transport mechanism. The six dimensionless numbers give the relative strengths of the different phenomena of inertia, viscosity, conductive heat transport, and diffusive mass transport. (In the table, the diagonals give common symbols for the quantities, and the given dimensionless number is the ratio of the left column quantity over top row quantity; e.g. Re = inertial force/viscous force = vd/ν.) These same quantities may alternatively be expressed as ratios of characteristic time, length, or energy scales. Such forms are less commonly used in practice, but can provide insight into particular applications.
vs. | Momentum | Viscosity | Surface tension | Gravity | Kinetic energy |
---|---|---|---|---|---|
Momentum | ρvd | Re | Fr | ||
Viscosity | Re−1 | ρν, μ | Oh, Ca, La−1 | Ga−1 | |
Surface tension | Oh−1, Ca−1, La | σ | Bo−1 | We−1 | |
Gravity | Fr−1 | Ga | Bo | g | |
Kinetic energy | We | ρv2d |
Droplet formation mostly depends on momentum, viscosity and surface tension.[2] In inkjet printing for example, an ink with a too high Ohnesorge number would not jet properly, and an ink with a too low Ohnesorge number would be jetted with many satellite drops.[3] Not all of the quantity ratios are explicitly named, though each of the unnamed ratios could be expressed as a product of two other named dimensionless numbers.
All numbers are dimensionless quantities. See other article for extensive list of dimensionless quantities. Certain dimensionless quantities of some importance to fluid mechanics are given below:
Name | Standard symbol | Definition | Field of application |
---|---|---|---|
Archimedes number | Ar | [math]\displaystyle{ \mathrm{Ar} = \frac{g L^3 \rho_\ell (\rho - \rho_\ell)}{\mu^2} }[/math] | fluid mechanics (motion of fluids due to density differences) |
Atwood number | A | [math]\displaystyle{ \mathrm{A} = \frac{\rho_1 - \rho_2} {\rho_1 + \rho_2} }[/math] | fluid mechanics (onset of instabilities in fluid mixtures due to density differences) |
Bejan number (fluid mechanics) |
Be | [math]\displaystyle{ \mathrm{Be} = \frac{\Delta P L^2} {\mu \alpha} }[/math] | fluid mechanics (dimensionless pressure drop along a channel)[4] |
Bingham number | Bm | [math]\displaystyle{ \mathrm{Bm} = \frac{ \tau_y L }{ \mu V } }[/math] | fluid mechanics, rheology (ratio of yield stress to viscous stress)[5] |
Biot number | Bi | [math]\displaystyle{ \mathrm{Bi} = \frac{h L_C}{k_b} }[/math] | heat transfer (surface vs. volume conductivity of solids) |
Blake number | Bl or B | [math]\displaystyle{ \mathrm{B} = \frac{u \rho}{\mu (1 - \epsilon) D} }[/math] | geology, fluid mechanics, porous media (inertial over viscous forces in fluid flow through porous media) |
Bond number | Bo | [math]\displaystyle{ \mathrm{Bo} = \frac{\rho a L^2}{\gamma} }[/math] | geology, fluid mechanics, porous media (buoyant versus capillary forces, similar to the Eötvös number)[6] |
Brinkman number | Br | [math]\displaystyle{ \mathrm{Br} = \frac {\mu U^2}{\kappa (T_w - T_0)} }[/math] | heat transfer, fluid mechanics (conduction from a wall to a viscous fluid) |
Burger number | Bu | [math]\displaystyle{ \mathrm{Bu} = \left(\dfrac{\mathrm{Ro}}{\mathrm{Fr}}\right)^2 }[/math] | meteorology, oceanography (density stratification versus Earth's rotation) |
Brownell–Katz number | NBK | [math]\displaystyle{ \mathrm{N}_\mathrm{BK} = \frac{u \mu}{k_\mathrm{rw}\sigma} }[/math] | fluid mechanics (combination of capillary number and Bond number)[7] |
Capillary number | Ca | [math]\displaystyle{ \mathrm{Ca} = \frac{\mu V}{\gamma} }[/math] | porous media, fluid mechanics (viscous forces versus surface tension) |
Cauchy number | Ca | [math]\displaystyle{ \mathrm{Ca} = \frac{\rho u^2}{K} }[/math] | compressible flows (inertia forces versus compressibility force) |
Cavitation number | Ca | [math]\displaystyle{ \mathrm{Ca}=\frac{p - p_\mathrm{v}}{\frac{1}{2}\rho v^2} }[/math] | multiphase flow (hydrodynamic cavitation, pressure over dynamic pressure) |
Chandrasekhar number | C | [math]\displaystyle{ \mathrm{C} = \frac{B^2 L^2}{\mu_o \mu D_M} }[/math] | hydromagnetics (Lorentz force versus viscosity) |
Colburn J factors | JM, JH, JD | turbulence; heat, mass, and momentum transfer (dimensionless transfer coefficients) | |
Damkohler number | Da | [math]\displaystyle{ \mathrm{Da} = k \tau }[/math] | chemistry (reaction time scales vs. residence time) |
Darcy friction factor | Cf or fD | fluid mechanics (fraction of pressure losses due to friction in a pipe; four times the Fanning friction factor) | |
Dean number | D | [math]\displaystyle{ \mathrm{D} = \frac{\rho V d}{\mu} \left( \frac{d}{2 R} \right)^{1/2} }[/math] | turbulent flow (vortices in curved ducts) |
Deborah number | De | [math]\displaystyle{ \mathrm{De} = \frac{t_\mathrm{c}}{t_\mathrm{p}} }[/math] | rheology (viscoelastic fluids) |
Drag coefficient | cd | [math]\displaystyle{ c_\mathrm{d} = \dfrac{2 F_\mathrm{d}}{\rho v^2 A}\, , }[/math] | aeronautics, fluid dynamics (resistance to fluid motion) |
Eckert number | Ec | [math]\displaystyle{ \mathrm{Ec} = \frac{V^2}{c_p\Delta T} }[/math] | convective heat transfer (characterizes dissipation of energy; ratio of kinetic energy to enthalpy) |
Eötvös number | Eo | [math]\displaystyle{ \mathrm{Eo}=\frac{\Delta\rho \,g \,L^2}{\sigma} }[/math] | fluid mechanics (shape of bubbles or drops) |
Ericksen number | Er | [math]\displaystyle{ \mathrm{Er}=\frac{\mu v L}{K} }[/math] | fluid dynamics (liquid crystal flow behavior; viscous over elastic forces) |
Euler number | Eu | [math]\displaystyle{ \mathrm{Eu}=\frac{\Delta{}p}{\rho V^2} }[/math] | hydrodynamics (stream pressure versus inertia forces) |
Excess temperature coefficient | [math]\displaystyle{ \Theta_r }[/math] | [math]\displaystyle{ \Theta_r = \frac{c_p (T-T_e)}{U_e^2/2} }[/math] | heat transfer, fluid dynamics (change in internal energy versus kinetic energy)[8] |
Fanning friction factor | f | fluid mechanics (fraction of pressure losses due to friction in a pipe; 1/4th the Darcy friction factor)[9] | |
Froude number | Fr | [math]\displaystyle{ \mathrm{Fr} = \frac{U}{\sqrt{g\ell}} }[/math] | fluid mechanics (wave and surface behaviour; ratio of a body's inertia to gravitational forces) |
Galilei number | Ga | [math]\displaystyle{ \mathrm{Ga} = \frac{g\, L^3}{\nu^2} }[/math] | fluid mechanics (gravitational over viscous forces) |
Görtler number | G | [math]\displaystyle{ \mathrm{G} = \frac{U_e \theta}{\nu} \left( \frac{\theta}{R} \right)^{1/2} }[/math] | fluid dynamics (boundary layer flow along a concave wall) |
Garcia-Atance number | GA | [math]\displaystyle{ \mathrm{ G_A} = \frac{ p - p_v }{\rho a L} }[/math] | phase change (ultrasonic cavitation onset, ratio of pressures over pressure due to acceleration) |
Graetz number | Gz | [math]\displaystyle{ \mathrm{Gz} = {D_H \over L} \mathrm{Re}\, \mathrm{Pr} }[/math] | heat transfer, fluid mechanics (laminar flow through a conduit; also used in mass transfer) |
Grashof number | Gr | [math]\displaystyle{ \mathrm{Gr}_L = \frac{g \beta (T_s - T_\infty ) L^3}{\nu ^2} }[/math] | heat transfer, natural convection (ratio of the buoyancy to viscous force) |
Hartmann number | Ha | [math]\displaystyle{ \mathrm{Ha} = BL \left( \frac{\sigma}{\rho\nu} \right)^\frac{1}{2} }[/math] | magnetohydrodynamics (ratio of Lorentz to viscous forces) |
Hagen number | Hg | [math]\displaystyle{ \mathrm{Hg} = -\frac{1}{\rho}\frac{\mathrm{d} p}{\mathrm{d} x}\frac{L^3}{\nu^2} }[/math] | heat transfer (ratio of the buoyancy to viscous force in forced convection) |
Iribarren number | Ir | [math]\displaystyle{ \mathrm{Ir} = \frac{\tan \alpha}{\sqrt{H/L_0}} }[/math] | wave mechanics (breaking surface gravity waves on a slope) |
Jakob number | Ja | [math]\displaystyle{ \mathrm{Ja} = \frac{c_{p,f}(T_w - T_{sat})}{h_{fg}} }[/math] | heat transfer (ratio of sensible heat to latent heat during phase changes) |
Karlovitz number | Ka | [math]\displaystyle{ \mathrm{Ka} = k t_c }[/math] | turbulent combustion (characteristic flow time times flame stretch rate) |
Kapitza number | Ka | [math]\displaystyle{ \mathrm{Ka} = \frac{\sigma}{\rho(g\sin\beta)^{1/3}\nu^{4/3}} }[/math] | fluid mechanics (thin film of liquid flows down inclined surfaces) |
Keulegan–Carpenter number | KC | [math]\displaystyle{ \mathrm{K_C} = \frac{V\,T}{L} }[/math] | fluid dynamics (ratio of drag force to inertia for a bluff object in oscillatory fluid flow) |
Knudsen number | Kn | [math]\displaystyle{ \mathrm{Kn} = \frac {\lambda}{L} }[/math] | gas dynamics (ratio of the molecular mean free path length to a representative physical length scale) |
Kutateladze number | Ku | [math]\displaystyle{ \mathrm{Ku} = \frac{U_h \rho_g^{1/2}}{\left({\sigma g (\rho_l - \rho_g)}\right)^{1/4}} }[/math] | fluid mechanics (counter-current two-phase flow)[10] |
Laplace number | La | [math]\displaystyle{ \mathrm{La} = \frac{\sigma \rho L}{\mu^2} }[/math] | fluid dynamics (free convection within immiscible fluids; ratio of surface tension to momentum-transport) |
Lewis number | Le | [math]\displaystyle{ \mathrm{Le} = \frac{\alpha}{D} = \frac{\mathrm{Sc}}{\mathrm{Pr}} }[/math] | heat and mass transfer (ratio of thermal to mass diffusivity) |
Lift coefficient | CL | [math]\displaystyle{ C_\mathrm{L} = \frac{L}{q\,S} }[/math] | aerodynamics (lift available from an airfoil at a given angle of attack) |
Lockhart–Martinelli parameter | [math]\displaystyle{ \chi }[/math] | [math]\displaystyle{ \chi = \frac{m_\ell}{m_g} \sqrt{\frac{\rho_g}{\rho_\ell}} }[/math] | two-phase flow (flow of wet gases; liquid fraction)[11] |
Mach number | M or Ma | [math]\displaystyle{ \mathrm{M} = \frac{{v}}{{v_\mathrm{sound}}} }[/math] | gas dynamics (compressible flow; dimensionless velocity) |
Marangoni number | Mg | [math]\displaystyle{ \mathrm{Mg} = - {\frac{\mathrm{d}\sigma}{\mathrm{d}T}}\frac{L \Delta T}{\eta \alpha} }[/math] | fluid mechanics (Marangoni flow; thermal surface tension forces over viscous forces) |
Markstein number | Ma | [math]\displaystyle{ \mathrm{Ma} = \frac{L_b}{l_f} }[/math] | turbulence, combustion (Markstein length to laminar flame thickness) |
Morton number | Mo | [math]\displaystyle{ \mathrm{Mo} = \frac{g \mu_c^4 \, \Delta \rho}{\rho_c^2 \sigma^3} }[/math] | fluid dynamics (determination of bubble/drop shape) |
Nusselt number | Nu | [math]\displaystyle{ \mathrm{Nu} =\frac{hd}{k} }[/math] | heat transfer (forced convection; ratio of convective to conductive heat transfer) |
Ohnesorge number | Oh | [math]\displaystyle{ \mathrm{Oh} = \frac{ \mu}{ \sqrt{\rho \sigma L }} = \frac{\sqrt{\mathrm{We}}}{\mathrm{Re}} }[/math] | fluid dynamics (atomization of liquids, Marangoni flow) |
Péclet number | Pe | [math]\displaystyle{ \mathrm{Pe} = \frac{L u}{D} }[/math] or [math]\displaystyle{ \mathrm{Pe} = \frac{L u}{\alpha} }[/math] | fluid mechanics (ratio of advective transport rate over molecular diffusive transport rate), heat transfer (ratio of advective transport rate over thermal diffusive transport rate) |
Prandtl number | Pr | [math]\displaystyle{ \mathrm{Pr} = \frac{\nu}{\alpha} = \frac{c_p \mu}{k} }[/math] | heat transfer (ratio of viscous diffusion rate over thermal diffusion rate) |
Pressure coefficient | CP | [math]\displaystyle{ C_p = {p - p_\infty \over \frac{1}{2} \rho_\infty V_\infty^2} }[/math] | aerodynamics, hydrodynamics (pressure experienced at a point on an airfoil; dimensionless pressure variable) |
Rayleigh number | Ra | [math]\displaystyle{ \mathrm{Ra}_{x} = \frac{g \beta} {\nu \alpha} (T_s - T_\infin) x^3 }[/math] | heat transfer (buoyancy versus viscous forces in free convection) |
Reynolds number | Re | [math]\displaystyle{ \mathrm{Re} = \frac{U L\rho}{\mu}=\frac{U L}{\nu} }[/math] | fluid mechanics (ratio of fluid inertial and viscous forces)[5] |
Richardson number | Ri | [math]\displaystyle{ \mathrm{Ri} = \frac{gh}{U^2} = \frac{1}{\mathrm{Fr}^2} }[/math] | fluid dynamics (effect of buoyancy on flow stability; ratio of potential over kinetic energy)[12] |
Roshko number | Ro | [math]\displaystyle{ \mathrm{Ro} = {f L^{2}\over \nu} =\mathrm{St}\,\mathrm{Re} }[/math] | fluid dynamics (oscillating flow, vortex shedding) |
Rossby number | Ro | [math]\displaystyle{ \text{Ro} = \frac{U}{Lf}, }[/math] | fluid flow (geophysics, ratio of inertial force to Coriolis force) |
Schmidt number | Sc | [math]\displaystyle{ \mathrm{Sc} = \frac{\nu}{D} }[/math] | mass transfer (viscous over molecular diffusion rate)[13] |
Shape factor | H | [math]\displaystyle{ H = \frac {\delta^*}{\theta} }[/math] | boundary layer flow (ratio of displacement thickness to momentum thickness) |
Sherwood number | Sh | [math]\displaystyle{ \mathrm{Sh} = \frac{K L}{D} }[/math] | mass transfer (forced convection; ratio of convective to diffusive mass transport) |
Sommerfeld number | S | [math]\displaystyle{ \mathrm{S} = \left( \frac{r}{c} \right)^2 \frac {\mu N}{P} }[/math] | hydrodynamic lubrication (boundary lubrication)[14] |
Stanton number | St | [math]\displaystyle{ \mathrm{St} = \frac{h}{c_p \rho V} = \frac{\mathrm{Nu}}{\mathrm{Re}\,\mathrm{Pr}} }[/math] | heat transfer and fluid dynamics (forced convection) |
Stokes number | Stk or Sk | [math]\displaystyle{ \mathrm{Stk} = \frac{\tau U_o}{d_c} }[/math] | particles suspensions (ratio of characteristic time of particle to time of flow) |
Strouhal number | St | [math]\displaystyle{ \mathrm{St} = \frac{f L}{U} }[/math] | Vortex shedding (ratio of characteristic oscillatory velocity to ambient flow velocity) |
Stuart number | N | [math]\displaystyle{ \mathrm{N} = \frac {B^2 L_{c} \sigma}{\rho U} = \frac{\mathrm{Ha}^2}{\mathrm{Re}} }[/math] | magnetohydrodynamics (ratio of electromagnetic to inertial forces) |
Taylor number | Ta | [math]\displaystyle{ \mathrm{Ta} = \frac{4\Omega^2 R^4}{\nu^2} }[/math] | fluid dynamics (rotating fluid flows; inertial forces due to rotation of a fluid versus viscous forces) |
Ursell number | U | [math]\displaystyle{ \mathrm{U} = \frac{H\, \lambda^2}{h^3} }[/math] | wave mechanics (nonlinearity of surface gravity waves on a shallow fluid layer) |
Wallis parameter | j∗ | [math]\displaystyle{ j^* = R \left( \frac{\omega \rho}{\mu} \right)^\frac{1}{2} }[/math] | multiphase flows (nondimensional superficial velocity)[15] |
Weber number | We | [math]\displaystyle{ \mathrm{We} = \frac{\rho v^2 l}{\sigma} }[/math] | multiphase flow (strongly curved surfaces; ratio of inertia to surface tension) |
Weissenberg number | Wi | [math]\displaystyle{ \mathrm{Wi} = \dot{\gamma} \lambda }[/math] | viscoelastic flows (shear rate times the relaxation time)[16] |
Womersley number | [math]\displaystyle{ \alpha }[/math] | [math]\displaystyle{ \alpha = R \left( \frac{\omega \rho}{\mu} \right)^\frac{1}{2} }[/math] | biofluid mechanics (continuous and pulsating flows; ratio of pulsatile flow frequency to viscous effects)[17] |
Zel'dovich number | [math]\displaystyle{ \beta }[/math] | [math]\displaystyle{ \beta = \frac{E}{RT_f} \frac{T_f-T_o}{T_f} }[/math] | fluid dynamics, Combustion (Measure of activation energy) |
Original source: https://en.wikipedia.org/wiki/Dimensionless numbers in fluid mechanics.
Read more |