Fluidized bed combustion (FBC) is a combustion technology used to burn solid fuels.
In its most basic form, fuel particles are suspended in a hot, bubbling fluidity bed of ash and other particulate materials (sand, limestone etc.) through which jets of air are blown to provide the oxygen required for combustion or gasification. The resultant fast and intimate mixing of gas and solids promotes rapid heat transfer and chemical reactions within the bed. FBC plants are capable of burning a variety of low-grade solid fuels, including most types of coal, coal waste and woody biomass, at high efficiency and without the necessity for expensive fuel preparation (e.g., pulverising). In addition, for any given thermal duty, FBCs are smaller than the equivalent conventional furnace, so may offer significant advantages over the latter in terms of cost and flexibility.
FBC reduces the amount of sulfur emitted in the form of SOx emissions. Limestone is used to precipitate out sulfate during combustion, which also allows more efficient heat transfer from the boiler to the apparatus used to capture the heat energy (usually water tubes). The heated precipitate coming in direct contact with the tubes (heating by conduction) increases the efficiency. Since this allows coal plants to burn at cooler temperatures, less NOx is also emitted. However, burning at low temperatures also causes increased polycyclic aromatic hydrocarbon emissions. FBC boilers can burn fuels other than coal, and the lower temperatures of combustion (800 °C / 1500 °F) have other added benefits as well.
There are two reasons for the rapid increase of FBC in combustors. First, the liberty of choice in respect of fuels in general, not only the possibility of using fuels which are difficult to burn using other technologies, is an important advantage of fluidized bed combustion. The second reason, which has become increasingly important, is the possibility of achieving, during combustion, a low emission of nitric oxides and the possibility of removing sulfur in a simple manner by using limestone as bed material.
Fluidized--bed combustion evolved from efforts to find a combustion process able to control pollutant emissions without external emission controls (such as scrubbers-flue gas desulfurization). The technology burns fuel at temperatures of 1,400 to 1,700 °F (750-900 °C), well below the threshold where nitrogen oxides form (at approximately 2,500 °F / 1400 °C, the nitrogen and oxygen atoms in the combustion air combine to form nitrogen oxide pollutants); it also avoids the ash melting problems related to high combustion temperature. The mixing action of the fluidized bed brings the flue gases into contact with a sulfur-absorbing chemical, such as limestone or dolomite. More than 95% of the sulfur pollutants in coal can be captured inside the boiler by the sorbent. The reductions may be less substantial than they seem, however, as they coincide with dramatic increases in polycyclic aromatic hydrocarbons, and possibly other carbon compound emissions. [citation needed]
Commercial FBC units operate at competitive efficiencies, cost less than today's conventional boiler units, and have SO2 and NO2 emissions below levels mandated by Federal standards. However, they have some disadvantages such as erosion on the tubes inside the boiler, uneven temperature distribution caused by clogs on the air inlet of the bed, long starting times reaching up to 48 hours in some cases.
FBC systems fit into essentially two major groups, atmospheric systems (FBC) and pressurized systems (PFBC), and two minor subgroups, bubbling (BFB) and circulating fluidized bed (CFB).
Atmospheric fluidized beds use limestone or dolomite to capture sulfur released by the combustion of coal. Jets of air suspend the mixture of sorbent and burning coal during combustion, converting the mixture into a suspension of red-hot particles that flow like a fluid. These boilers operate at atmospheric pressure.
The first-generation PFBC system also uses a sorbent and jets of air to suspend the mixture of sorbent and burning coal during combustion. However, these systems operate at elevated pressures and produce a high-pressure gas stream at temperatures that can drive a gas turbine. Steam generated from the heat in the fluidized bed is sent to a steam turbine, creating a highly efficient combined cycle system.
Original source: https://en.wikipedia.org/wiki/Fluidized bed combustion.
Read more |