In physics, fractional quantum mechanics is a generalization of standard quantum mechanics, which naturally comes out when the Brownian-like quantum paths substitute with the Lévy-like ones in the Feynman path integral. This concept was discovered by Nick Laskin who coined the term fractional quantum mechanics.[1]
Standard quantum mechanics can be approached in three different ways: the matrix mechanics, the Schrödinger equation and the Feynman path integral.
The Feynman path integral[2] is the path integral over Brownian-like quantum-mechanical paths. Fractional quantum mechanics has been discovered by Nick Laskin (1999) as a result of expanding the Feynman path integral, from the Brownian-like to the Lévy-like quantum mechanical paths. A path integral over the Lévy-like quantum-mechanical paths results in a generalization of quantum mechanics.[3] If the Feynman path integral leads to the well known Schrödinger equation, then the path integral over Lévy trajectories leads to the fractional Schrödinger equation.[4] The Lévy process is characterized
by the Lévy index α, 0 < α ≤ 2. At the special case when α = 2 the Lévy process becomes the process of Brownian motion. The fractional Schrödinger equation includes a space derivative of fractional order α instead of the second order (α = 2) space derivative in the standard Schrödinger equation. Thus, the fractional Schrödinger equation is a fractional differential equation in accordance with modern terminology.[5] This is the key point to launch the term fractional Schrödinger equation and more general term fractional quantum mechanics. As mentioned above, at α = 2 the Lévy motion becomes Brownian motion. Thus, fractional quantum mechanics includes standard quantum mechanics as a particular case at α = 2. The quantum-mechanical path integral over the Lévy paths at α = 2 becomes the well-known Feynman path integral and the fractional Schrödinger equation becomes the well-known Schrödinger equation.
ψ(r, t) is the wavefunction, which is the quantum mechanical function that determines the probability amplitude for the particle to have a given position r at any given time t,
The index α in the fractional Schrödinger equation is the Lévy index, 1 < α ≤ 2.
Fractional quantum mechanics in solid state systems
The effective mass of states in solid state systems can depend on the wave vector k, i.e. formally one considers m=m(k). Polariton Bose-Einstein condensate modes are examples of states in solid state systems with mass sensitive to variations and locally in k fractional quantum mechanics is experimentally feasible.
↑S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional
Integrals and Derivatives, Theory and Applications ~Gordon
and Breach, Amsterdam, 1993
Samko, S.; Kilbas, A.A.; Marichev, O. (1993). Fractional Integrals and Derivatives: Theory and Applications. Taylor & Francis Books. ISBN978-2-88124-864-1.
Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. (2006). Theory and Applications of Fractional Differential Equations. Amsterdam, Netherlands: Elsevier. ISBN978-0-444-51832-3.
Herrmann, R. (2014). Fractional Calculus - An Introduction for Physicists. Singapore: World Scientific. doi:10.1142/8934. ISBN978-981-4551-07-6.
Pinsker, F.; Bao, W.; Zhang, Y.; Ohadi, H.; Dreismann, A.; Baumberg, J. J. (25 November 2015). "Fractional quantum mechanics in polariton condensates with velocity-dependent mass". Physical Review B (American Physical Society (APS)) 92 (19): 195310. doi:10.1103/physrevb.92.195310. ISSN1098-0121.
Further reading
Amaral, R L P G do; Marino, E C (7 October 1992). "Canonical quantization of theories containing fractional powers of the d'Alembertian operator". Journal of Physics A: Mathematical and General (IOP Publishing) 25 (19): 5183–5200. doi:10.1088/0305-4470/25/19/026. ISSN0305-4470.
He, Xing-Fei (15 December 1990). "Fractional dimensionality and fractional derivative spectra of interband optical transitions". Physical Review B (American Physical Society (APS)) 42 (18): 11751–11756. doi:10.1103/physrevb.42.11751. ISSN0163-1829.
Iomin, Alexander (28 August 2009). "Fractional-time quantum dynamics". Physical Review E (American Physical Society (APS)) 80 (2): 022103. doi:10.1103/physreve.80.022103. ISSN1539-3755.
Matos-Abiague, A (5 December 2001). "Deformation of quantum mechanics in fractional-dimensional space". Journal of Physics A: Mathematical and General (IOP Publishing) 34 (49): 11059–11068. doi:10.1088/0305-4470/34/49/321. ISSN0305-4470.
Laskin, Nick (2000). "Fractals and quantum mechanics". Chaos: An Interdisciplinary Journal of Nonlinear Science (AIP Publishing) 10 (4): 780. doi:10.1063/1.1050284. ISSN1054-1500.
Naber, Mark (2004). "Time fractional Schrödinger equation". Journal of Mathematical Physics (AIP Publishing) 45 (8): 3339–3352. doi:10.1063/1.1769611. ISSN0022-2488.
de Oliveira, E Capelas; Vaz, Jayme (5 April 2011). "Tunneling in fractional quantum mechanics". Journal of Physics A: Mathematical and Theoretical (IOP Publishing) 44 (18): 185303. doi:10.1088/1751-8113/44/18/185303. ISSN1751-8113.
Tarasov, Vasily E. (2010). "Fractional Dynamics of Open Quantum Systems". Nonlinear Physical Science. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 467–490. doi:10.1007/978-3-642-14003-7_20. ISBN978-3-642-14002-0.
Tarasov, Vasily E. (2010). "Fractional Dynamics of Hamiltonian Quantum Systems". Nonlinear Physical Science. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 457–466. doi:10.1007/978-3-642-14003-7_19. ISBN978-3-642-14002-0.