Ishimori equation

From HandWiki - Reading time: 2 min

The Ishimori equation is a partial differential equation proposed by the Japanese mathematician (Ishimori 1984). Its interest is as the first example of a nonlinear spin-one field model in the plane that is integrable (Sattinger Tracy).

Equation

The Ishimori equation has the form

[math]\displaystyle{ \frac{\partial \mathbf{S}}{\partial t} = \mathbf{S}\wedge \left(\frac{\partial^2 \mathbf{S}}{\partial x^2} + \frac{\partial^2 \mathbf{S}}{\partial y^2}\right)+ \frac{\partial u}{\partial x}\frac{\partial \mathbf{S}}{\partial y} + \frac{\partial u}{\partial y}\frac{\partial \mathbf{S}}{\partial x}, }[/math]

 

 

 

 

(1a)

[math]\displaystyle{ \frac{\partial^2 u}{\partial x^2}-\alpha^2 \frac{\partial^2 u}{\partial y^2}=-2\alpha^2 \mathbf{S} \cdot \left(\frac{\partial \mathbf{S}}{\partial x}\wedge \frac{\partial \mathbf{S}}{\partial y}\right). }[/math]

 

 

 

 

(1b)

Lax representation

The Lax representation

[math]\displaystyle{ L_t = AL - LA }[/math]

 

 

 

 

(2)

of the equation is given by

[math]\displaystyle{ L =\Sigma \partial_x + \alpha I\partial_y, }[/math]

 

 

 

 

(3a)

[math]\displaystyle{ A = -2i\Sigma\partial_x^2+(-i\Sigma_x-i\alpha\Sigma_y\Sigma+u_yI-\alpha^3u_x\Sigma)\partial_x. }[/math]

 

 

 

 

(3b)

Here

[math]\displaystyle{ \Sigma=\sum_{j=1}^3S_j\sigma_j, }[/math]

 

 

 

 

(4)

the [math]\displaystyle{ \sigma_i }[/math] are the Pauli matrices and [math]\displaystyle{ I }[/math] is the identity matrix.

Reductions

The Ishimori equation admits an important reduction: in 1+1 dimensions it reduces to the continuous classical Heisenberg ferromagnet equation (CCHFE). The CCHFE is integrable.

Equivalent counterpart

The equivalent counterpart of the Ishimori equation is the Davey-Stewartson equation.

See also

References

External links





Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Physics:Ishimori_equation
11 views | Status: cached on July 31 2024 17:44:51
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF