The Ishimori equation is a partial differential equation proposed by the Japanese mathematician (Ishimori 1984). Its interest is as the first example of a nonlinear spin-one field model in the plane that is integrable (Sattinger Tracy).
The Ishimori equation has the form
[math]\displaystyle{ \frac{\partial \mathbf{S}}{\partial t} = \mathbf{S}\wedge \left(\frac{\partial^2 \mathbf{S}}{\partial x^2} + \frac{\partial^2 \mathbf{S}}{\partial y^2}\right)+ \frac{\partial u}{\partial x}\frac{\partial \mathbf{S}}{\partial y} + \frac{\partial u}{\partial y}\frac{\partial \mathbf{S}}{\partial x}, }[/math] |
|
( ) |
[math]\displaystyle{ \frac{\partial^2 u}{\partial x^2}-\alpha^2 \frac{\partial^2 u}{\partial y^2}=-2\alpha^2 \mathbf{S} \cdot \left(\frac{\partial \mathbf{S}}{\partial x}\wedge \frac{\partial \mathbf{S}}{\partial y}\right). }[/math] |
|
( ) |
The Lax representation
[math]\displaystyle{ L_t = AL - LA }[/math] |
|
( ) |
of the equation is given by
[math]\displaystyle{ L =\Sigma \partial_x + \alpha I\partial_y, }[/math] |
|
( ) |
[math]\displaystyle{ A = -2i\Sigma\partial_x^2+(-i\Sigma_x-i\alpha\Sigma_y\Sigma+u_yI-\alpha^3u_x\Sigma)\partial_x. }[/math] |
|
( ) |
Here
[math]\displaystyle{ \Sigma=\sum_{j=1}^3S_j\sigma_j, }[/math] |
|
( ) |
the [math]\displaystyle{ \sigma_i }[/math] are the Pauli matrices and [math]\displaystyle{ I }[/math] is the identity matrix.
The Ishimori equation admits an important reduction: in 1+1 dimensions it reduces to the continuous classical Heisenberg ferromagnet equation (CCHFE). The CCHFE is integrable.
The equivalent counterpart of the Ishimori equation is the Davey-Stewartson equation.
Original source: https://en.wikipedia.org/wiki/Ishimori equation.
Read more |