Continuum mechanics |
---|
This article summarizes equations in the theory of fluid mechanics.
Here [math]\displaystyle{ \mathbf{\hat{t}} \,\! }[/math] is a unit vector in the direction of the flow/current/flux.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Flow velocity vector field | u | [math]\displaystyle{ \mathbf{u}=\mathbf{u}\left ( \mathbf{r},t \right ) \,\! }[/math] | m s−1 | [L][T]−1 |
Velocity pseudovector field | ω | [math]\displaystyle{ \boldsymbol{\omega} = \nabla\times\mathbf{v} }[/math] | s−1 | [T]−1 |
Volume velocity, volume flux | φV (no standard symbol) | [math]\displaystyle{ \phi_V = \int_S \mathbf{u} \cdot \mathrm{d}\mathbf{A}\,\! }[/math] | m3 s−1 | [L]3 [T]−1 |
Mass current per unit volume | s (no standard symbol) | [math]\displaystyle{ s = \mathrm{d}\rho / \mathrm{d}t \,\! }[/math] | kg m−3 s−1 | [M] [L]−3 [T]−1 |
Mass current, mass flow rate | Im | [math]\displaystyle{ I_\mathrm{m} = \mathrm{d} m/\mathrm{d} t \,\! }[/math] | kg s−1 | [M][T]−1 |
Mass current density | jm | [math]\displaystyle{ I_\mathrm{m} = \iint \mathbf{j}_\mathrm{m} \cdot \mathrm{d}\mathbf{S} \,\! }[/math] | kg m−2 s−1 | [M][L]−2[T]−1 |
Momentum current | Ip | [math]\displaystyle{ I_\mathrm{p} = \mathrm{d} \left | \mathbf{p} \right |/\mathrm{d} t \,\! }[/math] | kg m s−2 | [M][L][T]−2 |
Momentum current density | jp | [math]\displaystyle{ I_\mathrm{p} =\iint \mathbf{j}_\mathrm{p} \cdot \mathrm{d}\mathbf{S} }[/math] | kg m s−2 | [M][L][T]−2 |
Physical situation | Nomenclature | Equations |
---|---|---|
Fluid statics, pressure gradient |
|
[math]\displaystyle{ \nabla P = \rho \mathbf{g}\,\! }[/math] |
Buoyancy equations |
|
Buoyant force [math]\displaystyle{ \mathbf{F}_\mathrm{b} = - \rho_f V_\mathrm{imm} \mathbf{g} = - \mathbf{F}_\mathrm{g}\,\! }[/math] Apparent weight |
Bernoulli's equation | pconstant is the total pressure at a point on a streamline | [math]\displaystyle{ p + \rho u^2/2 + \rho gy = p_\mathrm{constant}\,\! }[/math] |
Euler equations |
|
[math]\displaystyle{ \frac{\partial\rho}{\partial t}+\nabla\cdot(\rho\mathbf{u})=0\,\! }[/math] [math]\displaystyle{ \frac{\partial\rho{\mathbf{u}}}{\partial t} + \nabla \cdot \left ( \mathbf{u}\otimes \left ( \rho \mathbf{u} \right ) \right )+\nabla p=0\,\! }[/math] |
Convective acceleration | [math]\displaystyle{ \mathbf{a} = \left ( \mathbf{u} \cdot \nabla \right ) \mathbf{u} }[/math] | |
Navier–Stokes equations |
|
[math]\displaystyle{ \rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \nabla \cdot\mathbf{T}_\mathrm{D} + \mathbf{f} }[/math] |
Original source: https://en.wikipedia.org/wiki/List of equations in fluid mechanics.
Read more |