This article summarizes equations in the theory of nuclear physics and particle physics.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Number of atoms | N = Number of atoms remaining at time t N0 = Initial number of atoms at time t = 0 |
[math]\displaystyle{ N_0 = N + N_D \,\! }[/math] | dimensionless | dimensionless |
Decay rate, activity of a radioisotope | A | [math]\displaystyle{ A = \lambda N\,\! }[/math] | Bq = Hz = s−1 | [T]−1 |
Decay constant | λ | [math]\displaystyle{ \lambda = A/N \,\! }[/math] | Bq = Hz = s−1 | [T]−1 |
Half-life of a radioisotope | t1/2, T1/2 | Time taken for half the number of atoms present to decay
[math]\displaystyle{ t \rightarrow t + T_{1/2} \,\! }[/math] |
s | [T] |
Number of half-lives | n (no standard symbol) | [math]\displaystyle{ n = t / T_{1/2} \,\! }[/math] | dimensionless | dimensionless |
Radioisotope time constant, mean lifetime of an atom before decay | τ (no standard symbol) | [math]\displaystyle{ \tau = 1 / \lambda \,\! }[/math] | s | [T] |
Absorbed dose, total ionizing dose (total energy of radiation transferred to unit mass) | D can only be found experimentally | N/A | Gy = 1 J/kg (Gray) | [L]2[T]−2 |
Equivalent dose | H | [math]\displaystyle{ H = DQ \,\! }[/math]
Q = radiation quality factor (dimensionless) |
Sv = J kg−1 (Sievert) | [L]2[T]−2 |
Effective dose | E | [math]\displaystyle{ E = \sum_j H_jW_j \,\! }[/math]
Wj = weighting factors corresponding to radiosensitivities of matter (dimensionless) [math]\displaystyle{ \sum_j W_j = 1 \,\! }[/math] |
Sv = J kg−1 (Sievert) | [L]2[T]−2 |
Physical situation | Nomenclature | Equations |
---|---|---|
Mass number |
|
[math]\displaystyle{ A = Z+N\,\! }[/math] |
Mass in nuclei |
|
|
Nuclear radius | r0 ≈ 1.2 fm |
[math]\displaystyle{ r=r_0A^{1/3} \,\! }[/math]
hence (approximately)
|
Nuclear binding energy, empirical curve | Dimensionless parameters to fit experiment:
|
[math]\displaystyle{ \begin{align} E_B = & a_v A - a_s A^{2/3} - a_c Z(Z-1)A^{-1/3} \\
& -a_a (N-Z)^2 A^{-1} + 12\delta(N,Z)A^{-1/2} \\
\end{align} }[/math]
where (due to pairing of nuclei)
|
Physical situation | Nomenclature | Equations |
---|---|---|
Radioactive decay |
|
Statistical decay of a radionuclide:
[math]\displaystyle{ \frac{\mathrm{d} N}{\mathrm{d} t} = - \lambda N }[/math] [math]\displaystyle{ N = N_0e^{-\lambda t}\,\! }[/math] |
Bateman's equations | [math]\displaystyle{ c_i = \prod_{j=1, i\neq j}^D \frac{\lambda_j}{\lambda_j - \lambda_i} }[/math] | [math]\displaystyle{ N_D = \frac{N_1(0)}{\lambda_D} \sum_{i=1}^D \lambda_i c_i e^{-\lambda_i t} }[/math] |
Radiation flux |
|
[math]\displaystyle{ I = I_0e^{-\mu x}\,\! }[/math] |
The following apply for the nuclear reaction:
in the centre of mass frame, where a and b are the initial species about to collide, c is the final species, and R is the resonant state.
Physical situation | Nomenclature | Equations |
---|---|---|
Breit-Wigner formula |
|
Cross-section:
[math]\displaystyle{ \sigma(E) = \frac{\pi g}{k^2}\frac{\Gamma_{ab}\Gamma_c}{(E-E_0)^2+\Gamma^2/4} }[/math] Spin factor: [math]\displaystyle{ g = \frac{2J+1}{(2s_a+1)(2s_b+1)} }[/math] Total width: [math]\displaystyle{ \Gamma = \Gamma_{ab} + \Gamma_c }[/math] Resonance lifetime: [math]\displaystyle{ \tau = \hbar/\Gamma }[/math] |
Born scattering |
|
Differential cross-section:
[math]\displaystyle{ \frac{d\sigma}{d\Omega} = \left|\frac{2\mu}{\hbar^2}\int_0^\infty\frac{\sin(\Delta kr)}{\Delta kr}V(r)r^2dr\right|^2 }[/math] |
Mott scattering |
|
Differential cross-section (for identical particles in a coulomb potential, in centre of mass frame):
[math]\displaystyle{ \frac{d\sigma}{d\Omega}=\left(\frac{\alpha}{4E}\right)\left[\csc^{4}\frac{\chi}{2}+\sec^{4}\frac{\chi}{2}+\frac{A\cos\left(\frac{\alpha}{\hbar\nu}\ln\tan^{2}\frac{\chi}{2}\right)}{\sin^{2}\frac{\chi}{2}\cos\frac{\chi}{2}}\right]^{2} }[/math] Scattering potential energy (α = constant): [math]\displaystyle{ V = -\alpha/r }[/math] |
Rutherford scattering | Differential cross-section (non-identical particles in a coulomb potential):
[math]\displaystyle{ \frac{d\sigma}{d\Omega}=\left(\frac{1}{n}\right)\frac{dN}{d\Omega} = \left(\frac{\alpha}{4E}\right)^2 \csc^4\frac{\chi}{2} }[/math] |
These equations need to be refined such that the notation is defined as has been done for the previous sets of equations.
Name | Equations |
---|---|
Strong force | [math]\displaystyle{ \begin{align} \mathcal{L}_\mathrm{QCD} & = \bar{\psi}_i\left(i \gamma^\mu (D_\mu)_{ij} - m\, \delta_{ij}\right) \psi_j - \frac{1}{4}G^a_{\mu \nu} G^{\mu \nu}_a \\ & = \bar{\psi}_i (i \gamma^\mu \partial_\mu - m )\psi_i - g G^a_\mu \bar{\psi}_i \gamma^\mu T^a_{ij} \psi_j - \frac{1}{4}G^a_{\mu \nu} G^{\mu \nu}_a \,,\\ \end{align} \,\! }[/math] |
Electroweak interaction | :[math]\displaystyle{ \mathcal{L}_{EW} = \mathcal{L}_g + \mathcal{L}_f + \mathcal{L}_h + \mathcal{L}_y.\,\! }[/math]
|
Quantum electrodynamics | [math]\displaystyle{ \mathcal{L}=\bar\psi(i\gamma^\mu D_\mu-m)\psi -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}\;,\,\! }[/math] |