Idealised example of the rotational spectrum (bottom) produced by transitions between different rotational energy levels (top) of a simple linear molecule. is the rotational constant of the molecule, is the rotational quantum number, is the upper level and is the lower level.
The molecules listed below were detected through astronomical spectroscopy. Their spectral features arise because molecules either absorb or emit a photon of light when they transition between two molecular energy levels. The energy (and thus the wavelength) of the photon matches the energy difference between the levels involved. Molecular electronic transitions occur when one of the molecule's electrons moves between molecular orbitals, producing a spectral line in the ultraviolet, optical or near-infrared parts of the electromagnetic spectrum. Alternatively, a vibrational transition transfers quanta of energy to (or from) vibrations of molecular bonds, producing signatures in the mid- or far-infrared. Gas-phase molecules also have quantised rotational levels, leading to transitions at microwave or radio wavelengths.[1]
Sometimes a transition can involve more than one of these types of energy level e.g. ro-vibrational spectroscopy changes both the rotational and vibrational energy level. Occasionally all three occur together, as in the Phillips band of C2 (diatomic carbon), in which an electronic transition produces a line in the near-infrared, which is then split into several vibronic bands by a simultaneous change in vibrational level, which in turn are split again into rotational branches.[2]
The spectrum of a particular molecule is governed by the selection rules of quantum chemistry and by its molecular symmetry. Some molecules have simple spectra which are easy to identify, whilst others (even some small molecules) have extremely complex spectra with flux spread among many different lines, making them far harder to detect.[3] Interactions between the atomic nuclei and the electrons sometimes cause further hyperfine structure of the spectral lines. If the molecule exists in multiple isotopologues (versions containing different atomic isotopes), the spectrum is further complicated by isotope shifts.
Detection of a new interstellar or circumstellar molecule requires identifying a suitable astronomical object where it is likely to be present, then observing it with a telescope equipped with a spectrograph working at the required wavelength, spectral resolution and sensitivity. The first molecule detected in the interstellar medium was the methylidyne radical (CH•) in 1937, through its strong electronic transition at 4300 angstroms (in the optical).[4] Advances in astronomical instrumentation have led to increasing numbers of new detections. From the 1950s onwards, radio astronomy began to dominate new detections, with sub-mm astronomy also becoming important from the 1990s.[3]
The inventory of detected molecules is highly biased towards certain types which are easier to detect: e.g. radio astronomy is most sensitive to small linear molecules with a high molecular dipole.[3] The most common molecule in the Universe, H2 (molecular hydrogen), is completely invisible to radio telescopes because it has no dipole;[3] its electronic transitions are too energetic for optical telescopes, so detection of H2 required ultraviolet observations with a sounding rocket.[5] Vibrational lines are often not specific to an individual molecule, allowing only the general class to be identified. For example, the vibrational lines of polycyclic aromatic hydrocarbons (PAHs) were identified in 1984,[6] showing the class of molecules is very common in space,[7] but it took until 2021 to identify any specific PAHs through their rotational lines.[8][9]
The carbon star CW Leo. The visible shells of circumstellar material were ejected by the central star over thousands of years.
One of the richest sources for detecting interstellar molecules is Sagittarius B2 (Sgr B2), a giant molecular cloud near the centre of the Milky Way. About half of the molecules listed below were first found in Sgr B2, and many of the others have been subsequently detected there.[10] A rich source of circumstellar molecules is CW Leonis (also known as IRC +10216), a nearby carbon star, where about 50 molecules have been identified.[11] There is no clear boundary between interstellar and circumstellar media, so both are included in the tables below.
The discipline of astrochemistry includes understanding how these molecules form and explaining their abundances. The extremely low density of the interstellar medium is not conducive to the formation of molecules, making conventional gas-phase reactions between neutral species (atoms or molecules) inefficient. Many regions also have very low temperatures (typically 10 kelvin inside a molecular cloud), further reducing the reaction rates, or high ultraviolet radiation fields, which destroy molecules through photochemistry.[12] Explaining the observed abundances of interstellar molecules requires calculating the balance between formation and destruction rates using gas-phase ion chemistry (often driven by cosmic rays), surface chemistry on cosmic dust, radiative transfer including interstellar extinction, and sophisticated reaction networks.[13] The use of molecular lines to determine the physical properties of astronomical objects is known as molecular astrophysics.
Molecules
The following tables list molecules that have been detected in the interstellar medium or circumstellar matter, grouped by the number of component atoms. Neutral molecules and their molecular ions are listed in separate columns; if there is no entry in the molecule column, only the ionized form has been detected. Designations (names of molecules) are those used in the scientific literature describing the detection; if none was given that field is left empty. Mass is listed in atomic mass units. Deuterated molecules, which contain at least one deuterium (2H) atom, have slightly different masses and are listed in a separate table. The total number of unique species, including distinct ionization states, is indicated in each section header.
Most of the molecules detected so far are organic. The only detected inorganic molecule with five or more atoms is SiH4.[14] Molecules larger than that all have at least one carbon atom, with no N−N or O−O bonds.[14]
Carbon monoxide is frequently used to trace the distribution of mass in molecular clouds.[15]
Evidence for the existence of the following molecules has been reported in the scientific literature, but the detections either are described as tentative by the authors, or have been challenged by other researchers. They await independent confirmation.
↑Chaffee, Frederick H.; Lutz, Barry L.; Black, John H.; Vanden Bout, Paul A.; Snell, Ronald L. (1980). "Rotational fine-structure lines of interstellar C2 toward Zeta Persei". The Astrophysical Journal236: 474. doi:10.1086/157764. Bibcode: 1980ApJ...236..474C.
↑ 3.03.13.23.3McGuire, Brett A. (2018). "2018 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules". The Astrophysical Journal Supplement Series239 (2): 17. doi:10.3847/1538-4365/aae5d2. Bibcode: 2018ApJS..239...17M.
↑Leger, A.; Puget, J. L. (1984). "Identification of the "unidentified" IR emission features of interstellar dust ?". Astronomy and Astrophysics137: L5. Bibcode: 1984A&A...137L...5L.
↑ 8.08.18.2McGuire, Brett A.; Loomis, Ryan A.; Burkhardt, Andrew M.; Lee, Kin Long Kelvin; Shingledecker, Christopher N.; Charnley, Steven B.; Cooke, Ilsa R.; Cordiner, Martin A. et al. (19 March 2021). "Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering". Science371 (6535): 1265–1269. doi:10.1126/science.abb7535. PMID33737489. Bibcode: 2021Sci...371.1265M.
↑ 9.09.1Burkhardt, Andrew M.; Long Kelvin Lee, Kin; Bryan Changala, P.; Shingledecker, Christopher N.; Cooke, Ilsa R.; Loomis, Ryan A.; Wei, Hongji; Charnley, Steven B. et al. (1 June 2021). "Discovery of the Pure Polycyclic Aromatic Hydrocarbon Indene (c-C9H8) with GOTHAM Observations of TMC-1". The Astrophysical Journal Letters913 (2): L18. doi:10.3847/2041-8213/abfd3a. Bibcode: 2021ApJ...913L..18B.
↑Cummins, S. E.; Linke, R. A.; Thaddeus, P. (1986), "A survey of the millimeter-wave spectrum of Sagittarius B2", Astrophysical Journal Supplement Series60: 819–878, doi:10.1086/191102, Bibcode: 1986ApJS...60..819C
↑Brown, Laurie M.; Pais, Abraham; Pippard, A. B. (1995), "The physics of the interstellar medium", Twentieth Century Physics (2nd ed.), CRC Press, p. 1765, ISBN978-0-7503-0310-1
↑ 17.017.117.2Cernicharo, J.; Guelin, M. (1987), "Metals in IRC+10216 - Detection of NaCl, AlCl, and KCl, and tentative detection of AlF", Astronomy and Astrophysics183 (1): L10–L12, Bibcode: 1987A&A...183L..10C
↑Ziurys, L. M.; Apponi, A. J.; Phillips, T. G. (1994), "Exotic fluoride molecules in IRC +10216: Confirmation of AlF and searches for MgF and CaF", Astrophysical Journal433 (2): 729–732, doi:10.1086/174682, Bibcode: 1994ApJ...433..729Z
↑Tenenbaum, E. D.; Ziurys, L. M. (2009), "Millimeter Detection of AlO (X2Σ+): Metal Oxide Chemistry in the Envelope of VY Canis Majoris", Astrophysical Journal694 (1): L59–L63, doi:10.1088/0004-637X/694/1/L59, Bibcode: 2009ApJ...694L..59T
↑Barlow, M. J.; Swinyard, B. M.; Owen, P. J.; Cernicharo, J.; Gomez, H. L.; Ivison, R. J.; Lim, T. L.; Matsuura, M. et al. (2013), "Detection of a Noble Gas Molecular Ion, 36ArH+, in the Crab Nebula", Science342 (6164): 1343–1345, doi:10.1126/science.1243582, PMID24337290, Bibcode: 2013Sci...342.1343B
↑Souza, S. P; Lutz, B. L (1977). "Detection of C2 in the interstellar spectrum of Cygnus OB2 number 12 /VI Cygni number 12/". The Astrophysical Journal216: L49. doi:10.1086/182507. Bibcode: 1977ApJ...216L..49S.
↑Lambert, D. L.; Sheffer, Y.; Federman, S. R. (1995), "Hubble Space Telescope observations of C2 molecules in diffuse interstellar clouds", Astrophysical Journal438: 740–749, doi:10.1086/175119, Bibcode: 1995ApJ...438..740L
↑ 29.029.1Guelin, M.; Cernicharo, J.; Paubert, G.; Turner, B. E. (1990), "Free CP in IRC + 10216", Astronomy and Astrophysics230: L9–L11, Bibcode: 1990A&A...230L...9G
↑ 30.030.130.2Dopita, Michael A.; Sutherland, Ralph S. (2003), Astrophysics of the diffuse universe, Springer-Verlag, ISBN978-3-540-43362-0
↑Dent, W.R.F.; Wyatt, M.C.; Roberge, A.; Augereau, J.-C.; Casassus, S.; Corder, S.; Greaves, J.S.; de Gregorio-Monsalvo, I et al. (March 6, 2014). "Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Debris Disk". Science343 (6178): 1490–1492. doi:10.1126/science.1248726. PMID24603151. Bibcode: 2014Sci...343.1490D.
↑Latter, W. B.; Walker, C. K.; Maloney, P. R. (1993), "Detection of the Carbon Monoxide Ion (CO+) in the Interstellar Medium and a Planetary Nebula", Astrophysical Journal Letters419: L97, doi:10.1086/187146, Bibcode: 1993ApJ...419L..97L
↑De Luca, M.; Gupta, H.; Neufeld, D.; Gerin, M.; Teyssier, D.; Drouin, B. J.; Pearson, J. C.; Lis, D. C. et al. (2012), "Herschel/HIFI Discovery of HCl+ in the Interstellar Medium", The Astrophysical Journal Letters751 (2): L37, doi:10.1088/2041-8205/751/2/L37, Bibcode: 2012ApJ...751L..37D
↑Neufeld, David A. et al. (1997), "Discovery of Interstellar Hydrogen Fluoride", Astrophysical Journal Letters488 (2): L141–L144, doi:10.1086/310942, Bibcode: 1997ApJ...488L.141N
↑Wagenblast, R. et al. (January 1993), "On the origin of NH in diffuse interstellar clouds", Monthly Notices of the Royal Astronomical Society260 (2): 420–424, doi:10.1093/mnras/260.2.420, Bibcode: 1993MNRAS.260..420W
↑Turner, B. E.; Bally, John (1987). "Detection of interstellar PN - the first identified phosphorus compound in the interstellar medium". The Astrophysical Journal321: L75. doi:10.1086/185009. Bibcode: 1987ApJ...321L..75T.
↑Ziurys, L. M. (1987), "Detection of interstellar PN - The first phosphorus-bearing species observed in molecular clouds", Astrophysical Journal Letters321 (1 Pt 2): L81–L85, doi:10.1086/185010, PMID11542218, Bibcode: 1987ApJ...321L..81Z
↑Tenenbaum, E. D.; Woolf, N. J.; Ziurys, L. M. (2007), "Identification of phosphorus monoxide (X 2 Pi r) in VY Canis Majoris: Detection of the first PO bond in space", Astrophysical Journal Letters666 (1): L29–L32, doi:10.1086/521361, Bibcode: 2007ApJ...666L..29T
↑Yamamura, S. T.; Kawaguchi, K.; Ridgway, S. T. (2000), "Identification of SH v=1 Ro-vibrational Lines in R Andromedae", The Astrophysical Journal528 (1): L33–L36, doi:10.1086/312420, PMID10587489, Bibcode: 2000ApJ...528L..33Y
↑Tenenbaum, E. D.; Ziurys, L. M. (2010), "Exotic Metal Molecules in Oxygen-rich Envelopes: Detection of AlOH (X1Σ+) in VY Canis Majoris", Astrophysical Journal712 (1): L93–L97, doi:10.1088/2041-8205/712/1/L93, Bibcode: 2010ApJ...712L..93T
↑Maier, John P; Lakin, Nicholas M; Walker, Gordon A. H; Bohlender, David A (2001). "Detection of C3 in Diffuse Interstellar Clouds". The Astrophysical Journal553 (1): 267–273. doi:10.1086/320668. Bibcode: 2001ApJ...553..267M.
↑Halfen, D. T.; Clouthier, D. J.; Ziurys, L. M. (2008), "Detection of the CCP Radical (X 2Πr) in IRC +10216: A New Interstellar Phosphorus-containing Species", Astrophysical Journal677 (2): L101–L104, doi:10.1086/588024, Bibcode: 2008ApJ...677L.101H
↑Whittet, Douglas C. B.; Walker, H. J. (1991), "On the occurrence of carbon dioxide in interstellar grain mantles and ion-molecule chemistry", Monthly Notices of the Royal Astronomical Society252: 63–67, doi:10.1093/mnras/252.1.63, Bibcode: 1991MNRAS.252...63W
↑Zack, L. N.; Halfen, D. T.; Ziurys, L. M. (June 2011), "Detection of FeCN (X 4Δi) in IRC+10216: A New Interstellar Molecule", The Astrophysical Journal Letters733 (2): L36, doi:10.1088/2041-8205/733/2/L36, Bibcode: 2011ApJ...733L..36Z
↑Hollis, J. M.; Jewell, P. R.; Lovas, F. J. (1995), "Confirmation of interstellar methylene", Astrophysical Journal, Part 1438: 259–264, doi:10.1086/175070, Bibcode: 1995ApJ...438..259H
↑Ossenkopf, V. et al. (2010), "Detection of interstellar oxidaniumyl: Abundant H2O+ towards the star-forming regions DR21, Sgr B2, and NGC6334", Astronomy & Astrophysics518: L111, doi:10.1051/0004-6361/201014577, Bibcode: 2010A&A...518L.111O.
↑Parise, B.; Bergman, P.; Du, F. (2012), "Detection of the hydroperoxyl radical HO2 toward ρ Ophiuchi A. Additional constraints on the water chemical network", Astronomy & Astrophysics Letters541: L11–L14, doi:10.1051/0004-6361/201219379, Bibcode: 2012A&A...541L..11P
↑Snyder, L. E.; Buhl, D. (1971), "Observations of Radio Emission from Interstellar Hydrogen Cyanide", Astrophysical Journal163: L47–L52, doi:10.1086/180664, Bibcode: 1971ApJ...163L..47S
↑ 74.074.1Schilke, P.; Benford, D. J.; Hunter, T. R.; Lis, D. C., Phillips, T. G.; Phillips, T. G. (2001), "A Line Survey of Orion-KL from 607 to 725 GHz", Astrophysical Journal Supplement Series132 (2): 281–364, doi:10.1086/318951, Bibcode: 2001ApJS..132..281S
↑Schilke, P.; Comito, C.; Thorwirth, S. (2003), "First Detection of Vibrationally Excited HNC in Space", The Astrophysical Journal582 (2): L101–L104, doi:10.1086/367628, Bibcode: 2003ApJ...582L.101S
↑ 76.076.1Schenewerk, M. S.; Snyder, L. E.; Hjalmarson, A. (1986), "Interstellar HCO - Detection of the missing 3 millimeter quartet", Astrophysical Journal Letters303: L71–L74, doi:10.1086/184655, Bibcode: 1986ApJ...303L..71S
↑Agúndez, M.; Cernicharo, J.; Guélin, M. (2007), "Discovery of Phosphaethyne (HCP) in Space: Phosphorus Chemistry in Circumstellar Envelopes", The Astrophysical Journal662 (2): L91, doi:10.1086/519561, Bibcode: 2007ApJ...662L..91A
↑Womack, M.; Ziurys, L. M.; Wyckoff, S. (1992), "A survey of N2H(+) in dense clouds - Implications for interstellar nitrogen and ion-molecule chemistry", Astrophysical Journal, Part 1387: 417–429, doi:10.1086/171094, Bibcode: 1992ApJ...387..417W
↑Hollis, J. M. et al. (1991), "Interstellar HNO: Confirming the Identification - Atoms, ions and molecules: New results in spectral line astrophysics", Atoms16: 407–412, Bibcode: 1991ASPC...16..407H
↑van Dishoeck, Ewine F. et al. (1993), "Detection of the Interstellar NH 2 Radical", Astrophysical Journal Letters416: L83–L86, doi:10.1086/187076, Bibcode: 1993ApJ...416L..83V
↑Ziurys, L. M. et al. (1994), "Detection of interstellar N2O: A new molecule containing an N-O bond", Astrophysical Journal Letters436: L181–L184, doi:10.1086/187662, Bibcode: 1994ApJ...436L.181Z
↑Hollis, J. M.; Rhodes, P. J. (November 1, 1982), "Detection of interstellar sodium hydroxide in self-absorption toward the galactic center", Astrophysical Journal Letters262: L1–L5, doi:10.1086/183900, Bibcode: 1982ApJ...262L...1H
↑ 94.094.1Irvine, W. M. et al. (1984), "Confirmation of the Existence of Two New Interstellar Molecules: C3H and C3O", Bulletin of the American Astronomical Society16: 877, Bibcode: 1984BAAS...16..877I
↑Mangum, J. G.; Wootten, A. (1990), "Observations of the cyclic C3H radical in the interstellar medium", Astronomy and Astrophysics239: 319–325, Bibcode: 1990A&A...239..319M
↑Bell, M. B.; Matthews, H. E. (1995), "Detection of C3N in the spiral arm gas clouds in the direction of Cassiopeia A", Astrophysical Journal, Part 1438: 223–225, doi:10.1086/175066, Bibcode: 1995ApJ...438..223B
↑Thaddeus, P. et al. (2008), "Laboratory and Astronomical Detection of the Negative Molecular Ion C3N-", The Astrophysical Journal677 (2): 1132–1139, doi:10.1086/528947, Bibcode: 2008ApJ...677.1132T
↑Wootten, Alwyn et al. (1991), "Detection of interstellar H3O(+) - A confirming line", Astrophysical Journal Letters380: L79–L83, doi:10.1086/186178, Bibcode: 1991ApJ...380L..79W
↑Cabezas, C.; Agúndez, M.; Marcelino, N.; Tercero, B.; Cuadrado, S.; Cernicharo, J. (October 2021). "Interstellar detection of the simplest aminocarbyne H2NC: an ignored but abundant molecule". Astronomy & Astrophysics654: A45. doi:10.1051/0004-6361/202141491. Bibcode: 2021A&A...654A..45C.
↑Minh, Y. C.; Irvine, W. M.; Brewer, M. K. (1991), "H2CS abundances and ortho-to-para ratios in interstellar clouds", Astronomy and Astrophysics244: 181–189, PMID11538284, Bibcode: 1991A&A...244..181M
↑Guelin, M.; Cernicharo, J. (1991), "Astronomical detection of the HCCN radical - Toward a new family of carbon-chain molecules?", Astronomy and Astrophysics244: L21–L24, Bibcode: 1991A&A...244L..21G
↑Minh, Y. C.; Irvine, W. M.; Ziurys, L. M. (1988), "Observations of interstellar HOCO(+) - Abundance enhancements toward the Galactic center", Astrophysical Journal, Part 1334 (1): 175–181, doi:10.1086/166827, PMID11538465, Bibcode: 1988ApJ...334..175M
↑Rivilla, V. M.; Jiménez-Serra, I.; García De La Concepción, J.; Martín-Pintado, J.; Colzi, L.; Rodríguez-Almeida, L. F.; Tercero, B.; Rico-Villas, F. et al. (2021). "Detection of the cyanomidyl radical (HNCN): A new interstellar species with the NCN backbone". Monthly Notices of the Royal Astronomical Society: Letters506 (1): L79–L84. doi:10.1093/mnrasl/slab074. Bibcode: 2021MNRAS.506L..79R.
↑Frerking, M. A.; Linke, R. A.; Thaddeus, P. (1979), "Interstellar isothiocyanic acid", Astrophysical Journal Letters234: L143–L145, doi:10.1086/183126, Bibcode: 1979ApJ...234L.143F
↑ 113.0113.1Nguyen-Q-Rieu; Graham, D.; Bujarrabal, V. (1984), "Ammonia and cyanotriacetylene in the envelopes of CRL 2688 and IRC + 10216", Astronomy and Astrophysics138 (1): L5–L8, Bibcode: 1984A&A...138L...5N
↑Coutens, A.; Ligterink, N. F. W.; Loison, J.-C.; Wakelam, V.; Calcutt, H.; Drozdovskaya, M. N.; Jørgensen, J. K.; Müller, H. S. P. et al. (2019). "The ALMA-PILS survey: First detection of nitrous acid (HONO) in the interstellar medium". Astronomy & Astrophysics623: L13. doi:10.1051/0004-6361/201935040. Bibcode: 2019A&A...623L..13C.
↑Butterworth, Anna L. et al. (2004), "Combined element (H and C) stable isotope ratios of methane in carbonaceous chondrites", Monthly Notices of the Royal Astronomical Society347 (3): 807–812, doi:10.1111/j.1365-2966.2004.07251.x, Bibcode: 2004MNRAS.347..807B
↑Cernicharo, J.; Tercero, B.; Fuente, A.; Domenech, J. L.; Cueto, M.; Carrasco, E.; Herrero, V. J.; Tanarro, I. et al. (18 June 2013). "Detection of the Ammonium Ion in Space". The Astrophysical Journal771 (1): L10. doi:10.1088/2041-8205/771/1/L10. Bibcode: 2013ApJ...771L..10C.
↑Lacy, J. H. et al. (1991), "Discovery of interstellar methane - Observations of gaseous and solid CH4 absorption toward young stars in molecular clouds", Astrophysical Journal376: 556–560, doi:10.1086/170304, Bibcode: 1991ApJ...376..556L
↑Cernicharo, J.; Marcelino, N.; Roueff, E.; Gerin, M.; Jiménez-Escobar, A.; Muñoz Caro, G. M. (2012), "Discovery of the Methoxy Radical, CH3O, toward B1: Dust Grain and Gas-phase Chemistry in Cold Dark Clouds", The Astrophysical Journal Letters759 (2): L43–L46, doi:10.1088/2041-8205/759/2/L43, Bibcode: 2012ApJ...759L..43C
↑Irvine, W. M. et al. (1988), "Identification of the interstellar cyanomethyl radical (CH2CN) in the molecular clouds TMC-1 and Sagittarius B2", Astrophysical Journal Letters334 (2): L107–L111, doi:10.1086/185323, PMID11538463, Bibcode: 1988ApJ...334L.107I
↑McGuire, B.A. et al. (2012), "Interstellar Carbodiimide (HNCNH): A New Astronomical Detection from the GBT PRIMOS Survey via Maser Emission Features", The Astrophysical Journal Letters758 (2): L33–L38, doi:10.1088/2041-8205/758/2/L33, Bibcode: 2012ApJ...758L..33M
↑ 130.0130.1Walmsley, C. M.; Winnewisser, G.; Toelle, F. (1990), "Cyanoacetylene and cyanodiacetylene in interstellar clouds", Astronomy and Astrophysics81 (1–2): 245–250, Bibcode: 1980A&A....81..245W
↑Rivilla, Víctor M.; Martín-Pintado, Jesús; Jiménez-Serra, Izaskun; Martín, Sergio; Rodríguez-Almeida, Lucas F.; Requena-Torres, Miguel A.; Rico-Villas, Fernando; Zeng, Shaoshan et al. (2020). "Prebiotic Precursors of the Primordial RNA World in Space: Detection of NH2OH". The Astrophysical Journal899 (2): L28. doi:10.3847/2041-8213/abac55. Bibcode: 2020ApJ...899L..28R.
↑Remijan, Anthony J. et al. (2008), "Detection of interstellar cyanoformaldehyde (CNCHO)", Astrophysical Journal675 (2): L85–L88, doi:10.1086/533529, Bibcode: 2008ApJ...675L..85R
↑Hollis, J. M. et al. (2006), "Cyclopropenone (c-H2C3O): A New Interstellar Ring Molecule", Astrophysical Journal642 (2): 933–939, doi:10.1086/501121, Bibcode: 2006ApJ...642..933H
↑Zaleski, D. P. et al. (2013), "Detection of E-Cyanomethanimine toward Sagittarius B2(N) in the Green Bank Telescope PRIMOS Survey", Astrophysical Journal Letters765 (1): L109, doi:10.1088/2041-8205/765/1/L10, Bibcode: 2013ApJ...765L..10Z
↑Guelin, M.; Neininger, N.; Cernicharo, J. (1998), "Astronomical detection of the cyanobutadiynyl radical C_5N", Astronomy and Astrophysics335: L1–L4, Bibcode: 1998A&A...335L...1G
↑Irvine, W. M. et al. (1988), "A new interstellar polyatomic molecule - Detection of propynal in the cold cloud TMC-1", Astrophysical Journal Letters335 (2): L89–L93, doi:10.1086/185346, PMID11538462, Bibcode: 1988ApJ...335L..89I
↑McCarthy, M. C. et al. (2006), "Laboratory and Astronomical Identification of the Negative Molecular Ion C6H−", Astrophysical Journal652 (2): L141–L144, doi:10.1086/510238, Bibcode: 2006ApJ...652L.141M
↑Xue, Ci; Willis, Eric R.; Loomis, Ryan A.; Kelvin Lee, Kin Long; Burkhardt, Andrew M.; Shingledecker, Christopher N.; Charnley, Steven B.; Cordiner, Martin A. et al. (2020). "Detection of Interstellar HC4NC and an Investigation of Isocyanopolyyne Chemistry under TMC-1 Conditions". The Astrophysical Journal900 (1): L9. doi:10.3847/2041-8213/aba631. Bibcode: 2020ApJ...900L...9X.
↑McGuire, Brett A; Burkhardt, Andrew M; Shingledecker, Christopher N; Kalenskii, Sergei V; Herbst, Eric; Remijan, Anthony J; McCarthy, Michael C (2017). "Detection of Interstellar HC5O in TMC-1 with the Green Bank Telescope". The Astrophysical Journal843 (2): L28. doi:10.3847/2041-8213/aa7ca3. Bibcode: 2017ApJ...843L..28M.
↑Halfen, D. T. et al. (2015), "Interstellar Detection of Methyl Isocyanate CH3NCO in Sgr B2(N): A Link from Molecular Clouds to Comets", Astrophysical Journal812 (1): L5, doi:10.1088/2041-8205/812/1/L5, Bibcode: 2015ApJ...812L...5H
↑Zeng, S.; Quénard, D.; Jiménez-Serra, I.; Martín-Pintado, J.; Rivilla, V. M.; Testi, L.; Martín-Doménech, R. (2019). "First detection of the pre-biotic molecule glycolonitrile (HOCH2CN) in the interstellar medium". Monthly Notices of the Royal Astronomical Society: Letters484 (1): L43–L48. doi:10.1093/mnrasl/slz002. Bibcode: 2019MNRAS.484L..43Z.
↑ 162.0162.1Lovas, F. J. et al. (2006), "Hyperfine Structure Identification of Interstellar Cyanoallene toward TMC-1", Astrophysical Journal Letters637 (1): L37–L40, doi:10.1086/500431, Bibcode: 2006ApJ...637L..37L
↑McGuire, Brett A.; Burkhardt, Andrew M.; Loomis, Ryan A.; Shingledecker, Christopher N.; Kelvin Lee, Kin Long; Charnley, Steven B.; Cordiner, Martin A.; Herbst, Eric et al. (2020). "Early Science from GOTHAM: Project Overview, Methods, and the Detection of Interstellar Propargyl Cyanide (HCCCH2CN) in TMC-1". The Astrophysical Journal900 (1): L10. doi:10.3847/2041-8213/aba632. Bibcode: 2020ApJ...900L..10M.
↑Hollis, J. M.; Lovas, F. J.; Jewell, P. R. (10 September 2000). "Interstellar Glycolaldehyde: The First Sugar". The Astrophysical Journal540 (2): L107–L110. doi:10.1086/312881. Bibcode: 2000ApJ...540L.107H.
↑Rivilla, Víctor M.; Colzi, Laura; Jiménez-Serra, Izaskun; Martín-Pintado, Jesús; Megías, Andrés; Melosso, Mattia; Bizzocchi, Luca; López-Gallifa, Álvaro et al. (1 April 2022). "Precursors of the RNA World in Space: Detection of (Z)-1,2-ethenediol in the Interstellar Medium, a Key Intermediate in Sugar Formation". Astrophysical Journal Letters929 (1): L11. doi:10.3847/2041-8213/ac6186. Bibcode: 2022ApJ...929L..11R.
↑Loomis, R. A. et al. (2013), "The Detection of Interstellar Ethanimine CH3CHNH) from Observations Taken during the GBT PRIMOS Survey", Astrophysical Journal Letters765 (1): L9, doi:10.1088/2041-8205/765/1/L9, Bibcode: 2013ApJ...765L...9L
↑ 168.0168.1Zeng, Shaoshan; Jiménez-Serra, Izaskun; Rivilla, Víctor M.; Martín-Pintado, Jesús; Rodríguez-Almeida, Lucas F.; Tercero, Belén; de Vicente, Pablo; Rico-Villas, Fernando et al. (1 October 2021). "Probing the Chemical Complexity of Amines in the ISM: Detection of Vinylamine (C2H3NH2) and Tentative Detection of Ethylamine (C2H5NH2)". The Astrophysical Journal Letters920 (2): L27. doi:10.3847/2041-8213/ac2c7e. Bibcode: 2021ApJ...920L..27Z.
↑Guelin, M. et al. (1997), "Detection of a new linear carbon chain radical: C7H", Astronomy and Astrophysics317: L37–L40, Bibcode: 1997A&A...317L...1G
↑Remijan, Anthony J. et al. (2014), "Observational Results of a Multi-telescope Campaign in Search of Interstellar Urea [(NH2)2CO]", Astrophysical Journal783 (2): 77, doi:10.1088/0004-637X/783/2/77, Bibcode: 2014ApJ...783...77R
↑ 172.0172.1Remijan, Anthony J. et al. (2006), "Methyltriacetylene (CH3C6H) toward TMC-1: The Largest Detected Symmetric Top", Astrophysical Journal643 (1): L37–L40, doi:10.1086/504918, Bibcode: 2006ApJ...643L..37R
↑Kroto, H. W. et al. (1978), "The detection of cyanohexatriyne, H (C≡ C)3CN, in Heiles's cloud 2", The Astrophysical Journal219: L133–L137, doi:10.1086/182623, Bibcode: 1978ApJ...219L.133K
↑Marcelino, N. et al. (2007), "Discovery of Interstellar Propylene (CH2CHCH3): Missing Links in Interstellar Gas-Phase Chemistry", Astrophysical Journal665 (2): L127–L130, doi:10.1086/521398, Bibcode: 2007ApJ...665L.127M
↑McGuire, Brett A; Shingledecker, Christopher N; Willis, Eric R; Burkhardt, Andrew M; El-Abd, Samer; Motiyenko, Roman A; Brogan, Crystal L; Hunter, Todd R et al. (2017). "ALMA Detection of Interstellar Methoxymethanol (CH3OCH2OH)". The Astrophysical Journal851 (2): L46. doi:10.3847/2041-8213/aaa0c3. Bibcode: 2017ApJ...851L..46M.
↑McGuire, B. A.; Carroll, P. B.; Loomis, R. A.; Finneran, I. A.; Jewell, P. R.; Remijan, A. J.; Blake, G. A. (2016). "Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O)". Science352 (6292): 1449–52. doi:10.1126/science.aae0328. PMID27303055. Bibcode: 2016Sci...352.1449M.
↑ 188.0188.1Belloche, A. et al. (May 2009), "Increased complexity in interstellar chemistry: Detection and chemical modeling of ethyl formate and n-propyl cyanide in Sgr B2(N)", Astronomy and Astrophysics499 (1): 215–232, doi:10.1051/0004-6361/200811550, Bibcode: 2009A&A...499..215B
↑Belloche, Arnaud; Garrod, Robin T.; Müller, Holger S. P.; Menten, Karl M. (26 September 2014). "Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide". Science345 (6204): 1584–1587. doi:10.1126/science.1256678. PMID25258074. Bibcode: 2014Sci...345.1584B.
↑McGuire, Brett A.; Burkhardt, Andrew M.; Kalenskii, Sergei; Shingledecker, Christopher N.; Remijan, Anthony J.; Herbst, Eric; McCarthy, Michael C. (12 January 2018). "Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium". Science359 (6372): 202–205. doi:10.1126/science.aao4890. PMID29326270. Bibcode: 2018Sci...359..202M.
↑Iglesias-Groth, S. (August 2023). "A search for tryptophan in the gas of the IC 348 star cluster of the Perseus molecular cloud". Monthly Notices of the Royal Astronomical Society523 (2): 2876–2886. doi:10.1093/mnras/stad1535. Bibcode: 2023MNRAS.523.2876I.
↑Foing, B. H.; Ehrenfreund, P. (1994), "Detection of two interstellar absorption bands coincident with spectral features of C60+", Nature369 (6478): 296–298, doi:10.1038/369296a0, Bibcode: 1994Natur.369..296F.
↑Campbell, Ewen K.; Holz, Mathias; Gerlich, Dieter; Maier, John P. (2015), "Laboratory confirmation of C60+ as the carrier of two diffuse interstellar bands", Nature523 (7560): 322–323, doi:10.1038/nature14566, PMID26178962, Bibcode: 2015Natur.523..322C
↑Melosso, M.; Bizzocchi, L.; Sipilä, O.; Giuliano, B. M.; Dore, L.; Tamassia, F.; Martin-Drumel, M.-A.; Pirali, O. et al. (2020). "First detection of NHD and ND2 in the interstellar medium". Astronomy & Astrophysics641: A153. doi:10.1051/0004-6361/202038490. Bibcode: 2020A&A...641A.153M.
↑Lis, D. C. et al. (2002), "Detection of Triply Deuterated Ammonia in the Barnard 1 Cloud", Astrophysical Journal571 (1): L55–L58, doi:10.1086/341132, Bibcode: 2002ApJ...571L..55L.
↑Turner, B. E. (1990), "Detection of doubly deuterated interstellar formaldehyde (D2CO) - an indicator of active grain surface chemistry", Astrophysical Journal Letters362: L29–L33, doi:10.1086/185840, Bibcode: 1990ApJ...362L..29T.
↑Doménech, J. L. et al. (2013), "Improved Determination of the 10-00 Rotational Frequency of NH3D+ from the High-Resolution Spectrum of the ν4 Infrared Band", Astrophysical Journal Letters771 (1): L11, doi:10.1088/2041-8205/771/1/L10, Bibcode: 2013ApJ...771L..11D
↑Gerin, M. et al. (1992), "Interstellar detection of deuterated methyl acetylene", Astronomy and Astrophysics253 (2): L29–L32, Bibcode: 1992A&A...253L..29G.
↑Markwick, A. J.; Charnley, S. B.; Butner, H. M.; Millar, T. J. (2005), "Interstellar CH3CCD", The Astrophysical Journal627 (2): L117–L120, doi:10.1086/432415, Bibcode: 2005ApJ...627L.117M.
↑Widicus Weaver, S. L.; Blake, G. A. (2005), "1,3-Dihydroxyacetone in Sagittarius B2(N-LMH): The First Interstellar Ketose", Astrophysical Journal Letters624 (1): L33–L36, doi:10.1086/430407, Bibcode: 2005ApJ...624L..33W
↑Apponi, A. J.; Halfen, D. T.; Ziurys, L. M.; Hollis, J. M.; Remijan, Anthony J.; Lovas, F. J. (2006). "Investigating the Limits of Chemical Complexity in Sagittarius B2(N): A Rigorous Attempt to Confirm 1,3-Dihydroxyacetone". The Astrophysical Journal643 (1): L29–L32. doi:10.1086/504979. Bibcode: 2006ApJ...643L..29A.
↑Fuchs, G. W. et al. (2005), "Trans-Ethyl Methyl Ether in Space: A new Look at a Complex Molecule in Selected Hot Core Regions", Astronomy & Astrophysics444 (2): 521–530, doi:10.1051/0004-6361:20053599, Bibcode: 2005A&A...444..521F
↑Iglesias-Groth, S. et al. (2008-09-20), "Evidence for the Naphthalene Cation in a Region of the Interstellar Medium with Anomalous Microwave Emission", The Astrophysical Journal Letters685 (1): L55–L58, doi:10.1086/592349, Bibcode: 2008ApJ...685L..55I - This spectral assignment has not been independently confirmed, and is described by the authors as "tentative" (page L58).
↑García-Hernández, D. A. et al. (2011), "The Formation of Fullerenes: Clues from New C60, C70, and (Possible) Planar C24 Detections in Magellanic Cloud Planetary Nebulae", Astrophysical Journal Letters737 (2): L30, doi:10.1088/2041-8205/737/2/L30, Bibcode: 2011ApJ...737L..30G.
↑Iglesias-Groth, S. et al. (May 2010), "A search for interstellar anthracene toward the Perseus anomalous microwave emission region", Monthly Notices of the Royal Astronomical Society407 (4): 2157–2165, doi:10.1111/j.1365-2966.2010.17075.x, Bibcode: 2010MNRAS.407.2157I
Notes
↑On Earth, the dominant isotope of argon is 40Ar, so ArH+ would have a mass of 41 amu. However, the interstellar detection was of the 36ArH+isotopologue, which has a mass of 37 amu.