This article summarizes equations in the theory of photonics, including geometric optics, physical optics, radiometry, diffraction, and interferometry.
Quantity (common name/s) | (Common) symbol/s | SI units | Dimension |
---|---|---|---|
Object distance | x, s, d, u, x1, s1, d1, u1 | m | [L] |
Image distance | x', s', d', v, x2, s2, d2, v2 | m | [L] |
Object height | y, h, y1, h1 | m | [L] |
Image height | y', h', H, y2, h2, H2 | m | [L] |
Angle subtended by object | θ, θo, θ1 | rad | dimensionless |
Angle subtended by image | θ', θi, θ2 | rad | dimensionless |
Curvature radius of lens/mirror | r, R | m | [L] |
Focal length | f | m | [L] |
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Lens power | P | [math]\displaystyle{ P = 1/f \,\! }[/math] | m−1 = D (dioptre) | [L]−1 |
Lateral magnification | m | [math]\displaystyle{ m = - x_2/x_1 = y_2/y_1 \,\! }[/math] | dimensionless | dimensionless |
Angular magnification | m | [math]\displaystyle{ m = \theta_2/\theta_1 \,\! }[/math] | dimensionless | dimensionless |
There are different forms of the Poynting vector, the most common are in terms of the E and B or E and H fields.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Poynting vector | S, N | [math]\displaystyle{ \mathbf{N} = \frac{1}{\mu_0}\mathbf{E}\times\mathbf{B} = \mathbf{E}\times\mathbf{H} \,\! }[/math] | W m−2 | [M][T]−3 |
Poynting flux, EM field power flow | ΦS, ΦN | [math]\displaystyle{ \Phi_N = \int_S \mathbf{N} \cdot \mathrm{d}\mathbf{S} \,\! }[/math] | W | [M][L]2[T]−3 |
RMS Electric field of Light | Erms | [math]\displaystyle{ E_\mathrm{rms} = \sqrt{\langle E^2 \rangle} = E/\sqrt{2}\,\! }[/math] | N C−1 = V m−1 | [M][L][T]−3[I]−1 |
Radiation momentum | p, pEM, pr | [math]\displaystyle{ p_{EM} = U/c\,\! }[/math] | J s m−1 | [M][L][T]−1 |
Radiation pressure | Pr, pr, PEM | [math]\displaystyle{ P_{EM} = I/c = p_{EM}/At \,\! }[/math] | W m−2 | [M][T]−3 |
For spectral quantities two definitions are in use to refer to the same quantity, in terms of frequency or wavelength.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Radiant energy | Q, E, Qe, Ee | J | [M][L]2[T]−2 | |
Radiant exposure | He | [math]\displaystyle{ H_e = \mathrm{d} Q/\left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) \,\! }[/math] | J m−2 | [M][T]−3 |
Radiant energy density | ωe | [math]\displaystyle{ \omega_e = \mathrm{d} Q/\mathrm{d}V \,\! }[/math] | J m−3 | [M][L]−3 |
Radiant flux, radiant power | Φ, Φe | [math]\displaystyle{ Q = \int \Phi \mathrm{d} t }[/math] | W | [M][L]2[T]−3 |
Radiant intensity | I, Ie | [math]\displaystyle{ \Phi = I \mathrm{d} \Omega \,\! }[/math] | W sr−1 | [M][L]2[T]−3 |
Radiance, intensity | L, Le | [math]\displaystyle{ \Phi = \iint L\left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) \mathrm{d} \Omega }[/math] | W sr−1 m−2 | [M][T]−3 |
Irradiance | E, I, Ee, Ie | [math]\displaystyle{ \Phi = \int E \left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) }[/math] | W m−2 | [M][T]−3 |
Radiant exitance, radiant emittance | M, Me | [math]\displaystyle{ \Phi = \int M \left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) }[/math] | W m−2 | [M][T]−3 |
Radiosity | J, Jν, Je, Jeν | [math]\displaystyle{ J = E + M \,\! }[/math] | W m−2 | [M][T]−3 |
Spectral radiant flux, spectral radiant power | Φλ, Φν, Φeλ, Φeν | [math]\displaystyle{ Q=\iint\Phi_\lambda{\mathrm{d} \lambda \mathrm{d} t} }[/math]
[math]\displaystyle{ Q = \iint \Phi_\nu \mathrm{d} \nu \mathrm{d} t }[/math] |
W m−1 (Φλ) W Hz−1 = J (Φν) |
[M][L]−3[T]−3 (Φλ) [M][L]−2[T]−2 (Φν) |
Spectral radiant intensity | Iλ, Iν, Ieλ, Ieν | [math]\displaystyle{ \Phi = \iint I_\lambda \mathrm{d} \lambda \mathrm{d} \Omega }[/math]
[math]\displaystyle{ \Phi = \iint I_\nu \mathrm{d} \nu \mathrm{d} \Omega }[/math] |
W sr−1 m−1 (Iλ) W sr−1 Hz−1 (Iν) |
[M][L]−3[T]−3 (Iλ) [M][L]2[T]−2 (Iν) |
Spectral radiance | Lλ, Lν, Leλ, Leν | [math]\displaystyle{ \Phi = \iiint L_\lambda \mathrm{d} \lambda \left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) \mathrm{d} \Omega }[/math]
[math]\displaystyle{ \Phi = \iiint L_\nu \mathrm{d} \nu \left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) \mathrm{d} \Omega \,\! }[/math] |
W sr−1 m−3 (Lλ) W sr−1 m−2 Hz−1 (Lν) |
[M][L]−1[T]−3 (Lλ) [M][L]−2[T]−2 (Lν) |
Spectral irradiance | Eλ, Eν, Eeλ, Eeν | [math]\displaystyle{ \Phi = \iint E_\lambda \mathrm{d} \lambda \left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) }[/math]
[math]\displaystyle{ \Phi = \iint E_\nu \mathrm{d} \nu \left ( \mathbf{\hat{e}}_{\angle} \cdot \mathrm{d}\mathbf{A} \right ) }[/math] |
W m−3 (Eλ) W m−2 Hz−1 (Eν) |
[M][L]−1[T]−3 (Eλ) [M][L]−2[T]−2 (Eν) |
Physical situation | Nomenclature | Equations |
---|---|---|
Energy density in an EM wave |
|
For a dielectric:
|
Kinetic and potential momenta (non-standard terms in use) | Potential momentum:
[math]\displaystyle{ \mathbf{p}_\mathrm{p} = q\mathbf{A} \,\! }[/math] Kinetic momentum: [math]\displaystyle{ \mathbf{p}_\mathrm{k} = m\mathbf{v} \,\! }[/math] Cononical momentum: [math]\displaystyle{ \mathbf{p} = m\mathbf{v} + q\mathbf{A} \,\! }[/math] | |
Irradiance, light intensity |
|
[math]\displaystyle{ I = \langle \mathbf{S} \rangle = E^2_\mathrm{rms}/c\mu_0\,\! }[/math]
At a spherical surface: [math]\displaystyle{ I = \frac{P_0}{\Omega \left | r \right |^2}\,\! }[/math] |
Doppler effect for light (relativistic) | [math]\displaystyle{ \lambda=\lambda_0\sqrt{\frac{c-v}{c+v}}\,\! }[/math]
[math]\displaystyle{ v=|\Delta\lambda|c/\lambda_0\,\! }[/math] | |
Cherenkov radiation, cone angle |
|
[math]\displaystyle{ \cos \theta = \frac{c}{n v} = \frac{1}{v\sqrt{\epsilon\mu}} \,\! }[/math] |
Electric and magnetic amplitudes |
|
For a dielectric
[math]\displaystyle{ \left | \mathbf{E} \right | = \sqrt{\frac{\epsilon}{\mu}} \left | \mathbf{H} \right | \,\! }[/math] |
EM wave components | Electric
[math]\displaystyle{ \mathbf{E} = \mathbf{E}_0 \sin(kx-\omega t)\,\! }[/math] Magnetic [math]\displaystyle{ \mathbf{B} = \mathbf{B}_0 \sin(kx-\omega t)\,\! }[/math] |
Physical situation | Nomenclature | Equations |
---|---|---|
Critical angle (optics) |
|
[math]\displaystyle{ \sin\theta_c = \frac{n_2}{n_1}\,\! }[/math] |
Thin lens equation |
|
[math]\displaystyle{ \frac{1}{x_1} +\frac{1}{x_2} = \frac{1}{f} \,\! }[/math]
Lens focal length from refraction indices |
Image distance in a plane mirror | [math]\displaystyle{ x_2 = -x_1\,\! }[/math] | |
Spherical mirror |
|
Spherical mirror equation
[math]\displaystyle{ \frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{f}= \frac{2}{r}\,\! }[/math] Image distance in a spherical mirror [math]\displaystyle{ \frac{n_1}{x_1} + \frac{n_2}{x_2} = \frac{\left ( n_2 - n_1 \right )}{r}\,\! }[/math] |
Subscripts 1 and 2 refer to initial and final optical media respectively.
These ratios are sometimes also used, following simply from other definitions of refractive index, wave phase velocity, and the luminal speed equation:
[math]\displaystyle{ \frac{n_1}{n_2} = \frac{v_2}{v_1} = \frac{\lambda_2}{\lambda_1} = \sqrt{\frac{\epsilon_1 \mu_1}{\epsilon_2 \mu_2}} \,\! }[/math]
where:
Physical situation | Nomenclature | Equations |
---|---|---|
Angle of total polarisation |
|
[math]\displaystyle{ \tan \theta_B = n_2/n_1\,\! }[/math] |
intensity from polarized light, Malus's law |
|
[math]\displaystyle{ I = I_0\cos^2\theta\,\! }[/math] |
Property or effect | Nomenclature | Equation |
---|---|---|
Thin film in air |
|
|
The grating equation |
|
[math]\displaystyle{ \frac{\delta}{2\pi}\lambda = a \left ( \sin\theta + \sin\alpha \right ) \,\! }[/math] |
Rayleigh's criterion | [math]\displaystyle{ \theta_R = 1.22\lambda/\,\!d }[/math] | |
Bragg's law (solid state diffraction) |
|
[math]\displaystyle{ \frac{\delta}{2\pi} \lambda = 2d \sin\theta \,\! }[/math]
where [math]\displaystyle{ n \in \mathbf{N}\,\! }[/math] |
Single slit diffraction intensity |
[math]\displaystyle{ \phi = \frac{2 \pi a}{\lambda} \sin\theta \,\! }[/math] |
[math]\displaystyle{ I = I_0 \left [ \frac{ \sin \left( \phi/2 \right ) }{\left( \phi/2 \right )} \right ]^2 \,\! }[/math] |
N-slit diffraction (N ≥ 2) |
[math]\displaystyle{ \delta = \frac{2 \pi d}{\lambda} \sin\theta \,\! }[/math] |
[math]\displaystyle{ I = I_0 \left [ \frac{ \sin \left( N \delta/2 \right ) }{\sin \left( \delta/2 \right )} \right ]^2 \,\! }[/math] |
N-slit diffraction (all N) | [math]\displaystyle{ I = I_0 \left [ \frac{ \sin \left( \phi/2 \right ) }{\left( \phi/2 \right )} \frac{ \sin \left( N \delta/2 \right ) }{\sin \left( \delta/2 \right )} \right ]^2 \,\! }[/math] | |
Circular aperture intensity |
|
[math]\displaystyle{ I = I_0 \left ( \frac{2 J_1(ka \sin \theta)}{ka \sin \theta} \right )^2 }[/math] |
Amplitude for a general planar aperture | Cartesian and spherical polar coordinates are used, xy plane contains aperture
|
Near-field (Fresnel)
[math]\displaystyle{ A\left ( \mathbf{r} \right ) \propto \iint_\mathrm{aperture} E_\mathrm{inc} \left ( \mathbf{r}' \right )~ \frac{e^{ik \left | \mathbf{r} - \mathbf{r}' \right |}}{4 \pi \left | \mathbf{r} - \mathbf{r}' \right |} \mathrm{d}x'\mathrm{d}y' }[/math] Far-field (Fraunhofer) [math]\displaystyle{ A \left ( \mathbf{r} \right ) \propto \frac{e^{ik r}}{4 \pi r} \iint_\mathrm{aperture} E_\mathrm{inc}\left ( \mathbf{r}' \right ) e^{-ik \left [ \sin \theta \left ( \cos \phi x' + \sin \phi y' \right ) \right ] } \mathrm{d}x'\mathrm{d}y' }[/math] |
Huygen-Fresnel-Kirchhoff principle |
|
[math]\displaystyle{ A \mathbf ( \mathbf{r} ) = \frac{-i}{2\lambda} \iint_\mathrm{aperture} \frac{e^{i \mathbf{k} \cdot \left ( \mathbf{r} + \mathbf{r}_0 \right ) }}{ \left | \mathbf{r} \right |\left | \mathbf{r}_0 \right |} \left [ \cos \alpha_0 - \cos \alpha \right ] \mathrm{d}S \,\! }[/math] |
Kirchhoff's diffraction formula | [math]\displaystyle{ A \left ( \mathbf{r} \right ) = - \frac{1}{4 \pi} \iint_\mathrm{aperture} \frac{e^{i \mathbf{k} \cdot \mathbf{r}_0}}{\left | \mathbf{r}_0 \right |} \left[ i \left | \mathbf{k} \right | U_0 \left ( \mathbf{r}_0 \right ) \cos{\alpha} + \frac {\partial A_0 \left ( \mathbf{r}_0 \right )}{\partial n} \right ] \mathrm{d}S }[/math] |
In astrophysics, L is used for luminosity (energy per unit time, equivalent to power) and F is used for energy flux (energy per unit time per unit area, equivalent to intensity in terms of area, not solid angle). They are not new quantities, simply different names.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Comoving transverse distance | DM | pc (parsecs) | [L] | |
Luminosity distance | DL | [math]\displaystyle{ D_L = \sqrt{\frac{L}{4\pi F}} \, }[/math] | pc (parsecs) | [L] |
Apparent magnitude in band j (UV, visible and IR parts of EM spectrum) (Bolometric) | m | [math]\displaystyle{ m_j= -\frac{5}{2} \log_{10} \left | \frac {F_j}{F_j^0} \right | \, }[/math] | dimensionless | dimensionless |
Absolute magnitude
(Bolometric) |
M | [math]\displaystyle{ M = m - 5 \left [ \left ( \log_{10}{D_L} \right ) - 1 \right ]\!\, }[/math] | dimensionless | dimensionless |
Distance modulus | μ | [math]\displaystyle{ \mu = m - M \!\, }[/math] | dimensionless | dimensionless |
Colour indices | (No standard symbols) | [math]\displaystyle{ U-B = M_U - M_B\!\, }[/math] [math]\displaystyle{ B-V = M_B - M_V\!\, }[/math] |
dimensionless | dimensionless |
Bolometric correction | Cbol (No standard symbol) | [math]\displaystyle{ \begin{align} C_\mathrm{bol} & = m_\mathrm{bol} - V \\ & = M_\mathrm{bol} - M_V \end{align} \!\, }[/math] | dimensionless | dimensionless |