SEM images acquired at 52° tilt angle and at different magnification showing uniform distribution and dispersion of SiC nanoparticles in as-solidified Mg.[1]
Nanotech metallurgy (also called nanotechnology enabled metallurgy, or nanometallurgy) is an emerging interdisciplinary domain of materials science and engineering (especially metallurgy), manufacturing, and nanoscience and engineering to study how nanophases (both ex situ and in situ) can be applied to significantly improve the processing/manufacturing, micro/nano-structures, and physical/chemical/mechanical behaviors of metals and alloys. This definition was first proposed by Xiaochun Li [2] at the University of California, Los Angeles in 2018.
High performance metals and alloys offer potential to improve energy efficiency and system performance. While conventional metallurgical methods have reached certain limits, nanotech metallurgy has the potential to break the traditional barriers in the metals processing and manufacturing technologies. It has a wider scientific and technological reach beyond the concept of metal matrix nanocomposites (MMNCs),[3][4] as the study of MMNCs normally focuses on how nanoparticles (generally of high volume fractions) are used to tune material properties only.[5] With the development of more scalable methods of nanophase synthesis, incorporation, and dispersion for mass manufacturing, the metals and alloys produced by nanotech metallurgy are becoming more and more economical. Recently the discovery of a nanoparticle self-dispersion and stabilization mechanism in molten metals[6] gives a scientific and technical foundation for scalable manufacturing in nanotech metallurgy.
Nanotech metallurgy covers research areas such as nanophase effects on processing/manufacturing, materials properties (e.g. mechanical, physical and chemical properties), synthesis and production of nanophases (both in situ[7] and ex situ), interaction between nanophases and molten metal, solidification, and thermomechanical processing of metals containing nanophases.[8]
Nanophase effects on metals processing and manufacturing
Nanophases can be effectively used to tune microstructures of metals and alloys during solidification and thermomechanical deformation, to control recrystallization at elevated temperatures, and to break traditional metallurgical barriers, thus creating exciting new spaces in processing and manufacturing, such as in casting,[9] thermoplastic deformation, welding/joining, heat treatment, and machining, etc..
Nanophase effects on materials properties
Nanophases have significant effects on mechanical, physical and chemical properties of metals.[10][11] As compared with conventional metal matrix composites (MMCs) that are reinforced by micro-scale phases, the addition of nanophases is promising to overcome many disadvantages of MMCs such as poor ductility, machinability and low fracture toughness. For example, a super-strong but lightweight metal with extremely high specific strength and modulus was developed by disperse ceramic silicon carbidenanoparticles in magnesium.[12]
Nanophases synthesis and production
Nanotech metallurgy covers the synthesis, production and incorporation of nanophases (e.g. nanoparticles,[13]nanowires,[14] nanosheets,[15]carbon nanotubes (CNTs),[16][17]graphene,[18] etc.). To utilize the cutting edge nanotechnology to metallurgy, the scalability and cost of the nanophases are the major concerning factors to evaluate the feasibility. It is worth to mention that, with the rapid development of nanophase synthesis, production, incorporation, and dispersion, the cost of nanophases are becoming increasingly economical for metallurgy. Recent studies (e.g. molten salt reaction,[19] in-situ reaction[20] etc.) on molten salt based nanophase synthesis and incorporation indicatefurther ways to reduce the cost of nanophases and open up wider applications
Nanoparticles and molten metal interactions
The interactions between nanophases and molten metal include wetting, incorporation, mixing and dispersion.
Wetting is the key factor for effective incorporation and dispersion[21]
Incorporation methods including molten salt enabled incorporation, ultrasonic,[22] semi-solid fabrication[23][24] could be used.
Mixing: mechanical mixing by propeller, ultrasonic streaming effect and electromagnetic stirring
Dispersion and stabilization of nanoparticles in melts.[25]
Solidification of metals containing nanophases
Researchers have utilized the nanoparticles to refine the grain for different alloys(e.g. Al alloy,[26] Mg alloy,[27] etc.) during solidification including casting, welding,[28]3D printing,[29] etc. They can modify the grain size by serving as heterogeneous nucleation site or inhibiting grain growth during solidification. Nanoparticles can help to refine the secondary phase as well.
Pseudo phase diagrams of alloys with nanoparticles[52][53]
Materials design and modelling
Nanoparticle dispersion and distribution in metals and alloys[54]
Fundamental study on nanoparticle interactions with molten metal and solidification fronts (e.g. nanoparticle incorporation, wettability, mixing, distribution, dispersion, stability, pushing and capture, etc.)
Nanoparticle induced micro/nano-structure refinement and modification[55][56]
Nanoparticle effects on thermomechanical processing and manufacturing, including heat treatment,[57] thermoplastic deformation,[58] welding/joining, and machining,[59] etc.
Nanoparticle effect on mechanical/physical/chemical behaviours of metals and alloys, such as strengthening mechanisms, fatigue resistance, electrical and thermal performance, and corrosion resistance, etc.
Additive Manufacturing of metals with nanoparticles
Processing of metal powders containing nanoparticles[60][61]
High energy beam interactions with metals containing nanoparticles
Development and integration of scale up processing and manufacturing systems[62]
Nanotech metallurgy can be applied to a wide range applications including automobile,[64] sports, biomedical, electrical and electronics, aerospace, and defense s, etc.[65][66]
↑Zhang, Z.; Chen, D.L. (June 2008). "Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites". Materials Science and Engineering: A483-484: 148–152. doi:10.1016/j.msea.2006.10.184.
↑Tjong, S. C. (August 2007). "Novel Nanoparticle-Reinforced Metal Matrix Composites with Enhanced Mechanical Properties". Advanced Engineering Materials9 (8): 639–652. doi:10.1002/adem.200700106.
↑Chen, Lian-Yi; Xu, Jia-Quan; Choi, Hongseok; Pozuelo, Marta; Ma, Xiaolong; Bhowmick, Sanjit; Yang, Jenn-Ming; Mathaudhu, Suveen et al. (December 2015). "Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles". Nature528 (7583): 539–543. doi:10.1038/nature16445. ISSN0028-0836. PMID26701055. Bibcode: 2015Natur.528..539C.
↑Knipling, Keith E.; Karnesky, Richard A.; Lee, Constance P.; Dunand, David C.; Seidman, David N. (September 2010). "Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging". Acta Materialia58 (15): 5184–5195. doi:10.1016/j.actamat.2010.05.054. Bibcode: 2010AcMat..58.5184K.
↑Choi, Hongseok; Cho, Woo-hyun; Konishi, Hiromi; Kou, Sindo; Li, Xiaochun (April 2013). "Nanoparticle-Induced Superior Hot Tearing Resistance of A206 Alloy". Metallurgical and Materials Transactions A44 (4): 1897–1907. doi:10.1007/s11661-012-1531-8. ISSN1073-5623. Bibcode: 2013MMTA...44.1897C.
↑Huang, Bo; Hishinuma, Yoshimitsu; Noto, Hiroyuki; Muroga, Takeo (March 2019). "Mechanochemical processing of Cu-Y2O3 alloy by MA-HIP for heat sink materials application". Fusion Engineering and Design140: 33–40. doi:10.1016/j.fusengdes.2019.01.133. ISSN0920-3796.
↑Zhukov, Ilya; Kozulin, Alexander; Khrustalyov, Anton; Matveev, Alexey; Platov, Vladimir; Vorozhtsov, Alexander; Zhukova, Tatyana; Promakhov, Vladimir (2019-01-11). "The Impact of Particle Reinforcement with Al2O3, TiB2, and TiC and Severe Plastic Deformation Treatment on the Combination of Strength and Electrical Conductivity of Pure Aluminum". Metals9 (1): 65. doi:10.3390/met9010065. ISSN2075-4701.
↑Li, Xiao-Chun; Mathaudhu, Suveen; Yang, Jenn-Ming; Bhowmick, Sanjit; Ma, Xiaolong; Pozuelo, Marta; Choi, Hongseok; Xu, Jia-Quan et al. (December 2015). "Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles". Nature528 (7583): 539–543. doi:10.1038/nature16445. ISSN1476-4687. PMID26701055. Bibcode: 2015Natur.528..539C.
↑Jiang, Lin; Yang, Hanry; Yee, Joshua K.; Mo, Xuan; Topping, Troy; Lavernia, Enrique J.; Schoenung, Julie M. (January 2016). "Toughening of aluminum matrix nanocomposites via spatial arrays of boron carbide spherical nanoparticles". Acta Materialia103: 128–140. doi:10.1016/j.actamat.2015.09.057. ISSN1359-6454. Bibcode: 2016AcMat.103..128J.
↑Yazdani, Bahareh; Xia, Yongde; Ahmad, Iftikhar; Zhu, Yanqiu (January 2015). "Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites". Journal of the European Ceramic Society35 (1): 179–186. doi:10.1016/j.jeurceramsoc.2014.08.043. ISSN0955-2219.
↑Hong, Tianran; Li, Xianfeng; Wang, Haowei; Chen, Dong (2015-05-14). "Influence of solution temperature on microstructure and properties of in-situ TiB2/2009 composites". Materials Science and Engineering: A634: 1–4. doi:10.1016/j.msea.2015.03.037. ISSN0921-5093.
↑Estruga, Marc; Chen, Lianyi; Choi, Hongseok; Li, Xiaochun; Jin, Song (2013-08-29). "Ultrasonic-Assisted Synthesis of Surface-Clean TiB2 Nanoparticles and Their Improved Dispersion and Capture in Al-Matrix Nanocomposites". ACS Applied Materials & Interfaces5 (17): 8813–8819. doi:10.1021/am402719p. ISSN1944-8244. PMID23957877.
↑Ying, D.Y; Zhang, D.L (2000-06-30). "Processing of Cu–Al2O3 metal matrix nanocomposite materials by using high energy ball milling". Materials Science and Engineering: A286 (1): 152–156. doi:10.1016/s0921-5093(00)00627-4.
↑Fogagnolo, J.B; Velasco, F.; Robert, M.H; Torralba, J.M (2003-02-15). "Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders". Materials Science and Engineering: A342 (1–2): 131–143. doi:10.1016/s0921-5093(02)00246-0.
↑Chen, Lian-Yi; Xu, Jia-Quan; Choi, Hongseok; Pozuelo, Marta; Ma, Xiaolong; Bhowmick, Sanjit; Yang, Jenn-Ming; Mathaudhu, Suveen et al. (December 2015). "Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles". Nature528 (7583): 539–543. doi:10.1038/nature16445. ISSN0028-0836. PMID26701055. Bibcode: 2015Natur.528..539C.
↑De Cicco, Michael P.; Turng, Lih-Sheng; Li, Xiaochun; Perepezko, John H. (2011-08-01). "Nucleation Catalysis in Aluminum Alloy A356 Using Nanoscale Inoculants". Metallurgical and Materials Transactions A42 (8): 2323–2330. doi:10.1007/s11661-011-0607-1. ISSN1543-1940. Bibcode: 2011MMTA...42.2323D.
↑Chen, Kaixuan; Chen, Xiaohua; Ding, Ding; Shi, Guodong; Wang, Zidong (April 2016). "Heterogeneous nucleation effect of in situ iron-rich nanoparticles on grain refinement of copper alloy". Materials Letters168: 188–191. doi:10.1016/j.matlet.2016.01.027. ISSN0167-577X.
↑Clouet, Emmanuel; Nastar, Maylise; Sigli, Christophe (2004-02-19). "Nucleation of ${\mathrm{Al}}_{3}\mathrm{Zr}$ and ${\mathrm{Al}}_{3}\mathrm{Sc}$ in aluminum alloys: From kinetic Monte Carlo simulations to classical theory". Physical Review B69 (6): 064109. doi:10.1103/PhysRevB.69.064109.
↑Bashirnezhad, Kazem; Bazri, Shahab; Safaei, Mohammad Reza; Goodarzi, Marjan; Dahari, Mahidzal; Mahian, Omid; Dalkılıça, Ahmet Selim; Wongwises, Somchai (April 2016). "Viscosity of nanofluids: A review of recent experimental studies". International Communications in Heat and Mass Transfer73: 114–123. doi:10.1016/j.icheatmasstransfer.2016.02.005.
↑Bartels, C.; Raabe, D.; Gottstein, G.; Huber, U. (September 1997). "Investigation of the precipitation kinetics in an A16061/TiB2 metal matrix composite". Materials Science and Engineering: A237 (1): 12–23. doi:10.1016/S0921-5093(97)00104-4.
↑Reddy, M. Penchal; Shakoor, R.A.; Parande, Gururaj; Manakari, Vyasaraj; Ubaid, F.; Mohamed, A.M.A.; Gupta, Manoj (October 2017). "Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques". Progress in Natural Science: Materials International27 (5): 606–614. doi:10.1016/j.pnsc.2017.08.015. ISSN1002-0071.
↑Jamaati, Roohollah; Toroghinejad, Mohammad Reza; Edris, Hossein (February 2014). "Effect of SiC nanoparticles on the mechanical properties of steel-based nanocomposite produced by accumulative roll bonding process". Materials & Design54: 168–173. doi:10.1016/j.matdes.2013.08.033.
↑Liu, Jian; Li, Juan; Xu, Chengying (2014). "Interaction of the cutting tools and the ceramic-reinforced metal matrix composites during micro-machining: A review". CIRP Journal of Manufacturing Science and Technology7 (2): 55–70. doi:10.1016/j.cirpj.2014.01.003.
↑Liddicoat, Peter V.; Liao, Xiao-Zhou; Zhao, Yonghao; Zhu, Yuntian; Murashkin, Maxim Y.; Lavernia, Enrique J.; Valiev, Ruslan Z.; Ringer, Simon P. (December 2010). "Nanostructural hierarchy increases the strength of aluminium alloys". Nature Communications1 (1): 63. doi:10.1038/ncomms1062. ISSN2041-1723. PMID20842199. Bibcode: 2010NatCo...1...63L.
↑Knipling, Keith E.; Karnesky, Richard A.; Lee, Constance P.; Dunand, David C.; Seidman, David N. (September 2010). "Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging". Acta Materialia58 (15): 5184–5195. doi:10.1016/j.actamat.2010.05.054. Bibcode: 2010AcMat..58.5184K.
↑Li, Zhiming; Chen, Dong; Wang, Haowei; Lavernia, Enrique J.; Shan, Aidang (2014-11-03). "Nano-TiB2 reinforced ultrafine-grained pure Al produced by flux-assisted synthesis and asymmetrical rolling". Journal of Materials Research29 (21): 2514–2524. doi:10.1557/jmr.2014.280. ISSN0884-2914. Bibcode: 2014JMatR..29.2514L.
↑Tang, Y.; Chen, Z.; Borbély, A.; Ji, G.; Zhong, S.Y.; Schryvers, D.; Ji, V.; Wang, H.W. (April 2015). "Quantitative study of particle size distribution in an in-situ grown Al–TiB2 composite by synchrotron X-ray diffraction and electron microscopy". Materials Characterization102: 131–136. doi:10.1016/j.matchar.2015.03.003. ISSN1044-5803.
↑Terry, B. S.; Chinyamakobvu, O. S. (May 1992). "Dispersion and reaction of TiC in liquid iron alloys". Materials Science and Technology8 (5): 399–405. doi:10.1179/mst.1992.8.5.399. ISSN0267-0836.
↑Tanaka, K.; Saito, T. (May 1999). "Phase equilibria in TiB2-reinforced high modulus steel". Journal of Phase Equilibria20 (3): 207–214. doi:10.1361/105497199770335730. ISSN1054-9714.
↑Karak, S.K.; Dutta Majumdar, J.; Witczak, Z.; Lojkowski, W.; Manna, I. (September 2013). "Microstructure and mechanical properties of nano-Y2O3 dispersed ferritic alloys synthesized by mechanical alloying and consolidated by hydrostatic extrusion". Materials Science and Engineering: A580: 231–241. doi:10.1016/j.msea.2013.04.085. ISSN0921-5093.
↑Springer, H.; Aparicio Fernandez, R.; Duarte, M.J.; Kostka, A.; Raabe, D. (September 2015). "Microstructure refinement for high modulus in-situ metal matrix composite steels via controlled solidification of the system Fe–TiB 2". Acta Materialia96: 47–56. doi:10.1016/j.actamat.2015.06.017. ISSN1359-6454. Bibcode: 2015AcMat..96...47S.
↑Liu, G.; Zhang, G. J.; Jiang, F.; Ding, X. D.; Sun, Y. J.; Sun, J.; Ma, E. (2013-01-27). "Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility". Nature Materials12 (4): 344–350. doi:10.1038/nmat3544. ISSN1476-1122. PMID23353630. Bibcode: 2013NatMa..12..344L.
↑Liu, Weiqing; Wang, Xiaojun; Hu, Xiaoshi; Wu, Kun; Zheng, Mingyi (January 2017). "Effects of hot rolling on microstructure, macrotexture and mechanical properties of pre-extruded AZ31/SiC nanocomposite sheets". Materials Science and Engineering: A683: 15–23. doi:10.1016/j.msea.2016.11.007.
↑Jarin, S.; Saleh, T.; Rana, M.; Muthalif, A.G.A.; Ali, M.Y. (2017). "An Experimental Investigation on the Effect of Nanopowder for Micro-Wire Electro Discharge Machining of Gold Coated Silicon". Procedia Engineering184: 171–177. doi:10.1016/j.proeng.2017.04.082. ISSN1877-7058.
↑Parashivamurthy, K. I.; Chandrasekharaiah, M. N.; Sampathkumaran, P.; Seetharamu, S. (August 2006). "Casting of TiC-Reinforced Steel Matrix Composite". Materials and Manufacturing Processes21 (5): 473–478. doi:10.1080/10426910500471474. ISSN1042-6914.
↑Parker, W. J.; Jenkins, R. J.; Butler, C. P.; Abbott, G. L. (September 1961). "Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity". Journal of Applied Physics32 (9): 1679–1684. doi:10.1063/1.1728417. ISSN0021-8979. Bibcode: 1961JAP....32.1679P.