Pop

From HandWiki - Reading time: 3 min

Integrals and derivatives of displacement, including pop, as well as integrals and derivatives of energy, including actergy.[1]

In physics, pop, also known as pounce, is the sixth derivative of the position vector with respect to time, with the first, second, third, fourth, and fifth derivatives being velocity, acceleration, jerk, snap, and crackle, respectively; pop is thus the rate of change of the crackle with respect to time.[2][3] Pop is defined by any of the following equivalent expressions:

[math]\displaystyle{ \vec p =\frac {d \vec c} {dt}=\frac {d^2 \vec s} {dt^2}=\frac {d^3 \vec \jmath} {dt^3}=\frac {d^4 \vec a} {dt^4}=\frac {d^5 \vec v} {dt^5}=\frac {d^6 \vec r} {dt^6} }[/math]

The following equations are used for constant pop:

[math]\displaystyle{ \vec c = \vec c_0 + \vec p \,t }[/math]
[math]\displaystyle{ \vec s = \vec s_0 + \vec c_0 \,t + \frac{1}{2} \vec p \,t^2 }[/math]
[math]\displaystyle{ \vec \jmath = \vec \jmath_0 + \vec s_0 \,t + \frac{1}{2} \vec c_0 \,t^2 + \frac{1}{6} \vec p \,t^3 }[/math]
[math]\displaystyle{ \vec a = \vec a_0 + \vec \jmath_0 \,t + \frac{1}{2} \vec s_0 \,t^2 + \frac{1}{6} \vec c_0 \,t^3 + \frac{1}{24} \vec p \,t^4 }[/math]
[math]\displaystyle{ \vec v = \vec v_0 + \vec a_0 \,t + \frac{1}{2} \vec \jmath_0 \,t^2 + \frac{1}{6} \vec s_0 \,t^3 + \frac{1}{24} \vec c_0 \,t^4 + \frac{1}{120} \vec p \,t^5 }[/math]
[math]\displaystyle{ \vec r = \vec r_0 + \vec v_0 \,t + \frac{1}{2} \vec a_0 \,t^2 + \frac{1}{6} \vec \jmath_0 \,t^3 + \frac{1}{24} \vec s_0 \,t^4 + \frac{1}{120} \vec c_0 \,t^5 + \frac{1}{720} \vec p \,t^6 }[/math]

where

[math]\displaystyle{ \vec p }[/math] : constant pop,
[math]\displaystyle{ \vec c_0 }[/math] : initial crackle,
[math]\displaystyle{ \vec c }[/math] : final crackle,
[math]\displaystyle{ \vec s_0 }[/math] : initial snap,
[math]\displaystyle{ \vec s }[/math] : final snap,
[math]\displaystyle{ \vec \jmath_0 }[/math] : initial jerk,
[math]\displaystyle{ \vec \jmath }[/math] : final jerk,
[math]\displaystyle{ \vec a_0 }[/math] : initial acceleration,
[math]\displaystyle{ \vec a }[/math] : final acceleration,
[math]\displaystyle{ \vec v_0 }[/math] : initial velocity,
[math]\displaystyle{ \vec v }[/math] : final velocity,
[math]\displaystyle{ \vec r_0 }[/math] : initial position,
[math]\displaystyle{ \vec r }[/math] : final position,
[math]\displaystyle{ t }[/math] : time between initial and final states.

The terms snap (also referred to as jounce), crackle, and pop‍—‌for the fourth, fifth, and sixth derivatives of position‍—‌were inspired by the advertising mascots Snap, Crackle, and Pop.[3]

Unit and dimension

The dimensions of pop are LT−6. In SI units, this is m/s6, and in CGS units, 100 gal per quartic second.

References

  1. Janzen, Ryan et al. (2014). "Actergy as a Reflex Performance Metric: Integral-Kinematics Applications". Proceedings of the IEEE GEM 2014: 311–2. doi:10.1109/GEM.2014.7048123. 
  2. Thompson, Peter M. (5 May 2011). "Snap, Crackle, and Pop" (PDF). Hawthorne, California: Systems Technology. p. 1. https://info.aiaa.org/Regions/Western/Orange_County/Newsletters/Presentations%20Posted%20by%20Enrique%20P.%20Castro/AIAAOC_SnapCracklePop_docx.pdf. "The common names for the first three derivatives are velocity, acceleration, and jerk. The not so common names for the next three derivatives are snap, crackle, and pop." 
  3. 3.0 3.1 Visser, Matt (31 March 2004). "Jerk, snap and the cosmological equation of state". Classical and Quantum Gravity 21 (11): 2603–2616. doi:10.1088/0264-9381/21/11/006. ISSN 0264-9381. Bibcode2004CQGra..21.2603V. https://arxiv.org/pdf/gr-qc/0309109.pdf. Retrieved 17 May 2015. "Snap [the fourth time derivative] is also sometimes called jounce. The fifth and sixth time derivatives are sometimes somewhat facetiously referred to as crackle and pop.". 





Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Physics:Pop
33 views | Status: cached on July 25 2024 20:24:27
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF