The sequence of images demonstrating the rotation of the self-propelled PVC tubing, containing camphor.[1] The time separation between frames is 0.33 s.
Self-propulsion is the autonomous displacement of nano-, micro- and macroscopic natural and artificial objects, containing their own means of motion.[2][3][4][5][6][7] Self-propulsion is driven mainly by interfacial phenomena.[8] Various mechanisms of self-propelling have been introduced and investigated, which exploited phoretic effects,[9] gradient surfaces, breaking the wetting symmetry of a droplet on a surface,[10][11] the Leidenfrost effect,[12][13][14] the self-generated hydrodynamic and chemical fields originating from the geometrical confinements,[15] and soluto- and thermo-capillary Marangoni flows.[16][17][1] Self-propelled system demonstrate a potential as micro-fluidics devices[18] and micro-mixers.[19] Self-propelled liquid marbles have been demonstrated.[14]
↑Abbott, Nicholas L.; Velev, Orlin D. (2016). "Active particles propelled into researchers' focus". Current Opinion in Colloid & Interface Science21: 1–3. doi:10.1016/j.cocis.2016.01.002.
↑Kühn, Philipp T.; de Miranda, Barbara Santos; van Rijn, Patrick (2015-12-01). "Directed Autonomic Flow: Functional Motility Fluidics". Advanced Materials27 (45): 7401–7406. doi:10.1002/adma.201503000. PMID26467031.
↑Zhao, Guanjia; Pumera, Martin (2012-09-01). "Macroscopic Self-Propelled Objects". Chemistry: An Asian Journal7 (9): 1994–2002. doi:10.1002/asia.201200206. PMID22615262.
↑Bormashenko, Edward (2017). Physics of Wetting Phenomena and Applications of Fluids on Surfaces. Berlin/Boston, United States: De Gruyter. ISBN9783110444810. OCLC1004545593.
↑Daniel, Susan; Sircar, Sanjoy; Gliem, Jill; Chaudhury, Manoj K. (2004-05-01). "Ratcheting Motion of Liquid Drops on Gradient Surfaces". Langmuir20 (10): 4085–4092. doi:10.1021/la036221a.
↑Agapov, Rebecca L.; Boreyko, Jonathan B.; Briggs, Dayrl P.; Srijanto, Bernadeta R.; Retterer, Scott T.; Collier, C. Patrick; Lavrik, Nickolay V. (2014-01-28). "Asymmetric Wettability of Nanostructures Directs Leidenfrost Droplets". ACS Nano8 (1): 860–867. doi:10.1021/nn405585m. PMID24298880.
↑Lagubeau, Guillaume; Merrer, Marie Le; Clanet, Christophe; Quéré, David (May 2011). "Leidenfrost on a ratchet". Nature Physics7 (5): 395–398. doi:10.1038/nphys1925. Bibcode: 2011NatPh...7..395L.
↑ 14.014.1Bormashenko, Edward; Bormashenko, Yelena; Grynyov, Roman; Aharoni, Hadas; Whyman, Gene; Binks, Bernard P. (2015-05-07). "Self-Propulsion of Liquid Marbles: Leidenfrost-like Levitation Driven by Marangoni Flow". The Journal of Physical Chemistry C119 (18): 9910–9915. doi:10.1021/acs.jpcc.5b01307. Bibcode: 2015arXiv150204292B.
↑Uspal, W. E.; Popescu, M. N.; Dietrich, S.; Tasinkevych, M. (2015). "Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering". Soft Matter11 (3): 434–438. doi:10.1039/c4sm02317j. PMID25466926. Bibcode: 2014SMat...11..434U.
↑Izri, Ziane; van der Linden, Marjolein N.; Michelin, Sébastien; Dauchot, Olivier (2014). "Self-Propulsion of Pure Water Droplets by Spontaneous Marangoni-Stress-Driven Motion". Physical Review Letters113 (24): 248302. doi:10.1103/PhysRevLett.113.248302. PMID25541808. Bibcode: 2014PhRvL.113x8302I.
↑Nakata, Satoshi; Matsuo, Kyoko (2005-02-01). "Characteristic Self-Motion of a Camphor Boat Sensitive to Ester Vapor". Langmuir21 (3): 982–984. doi:10.1021/la047776o. PMID15667178.
↑Teh, Shia-Yen; Lin, Robert; Hung, Lung-Hsin; Lee, Abraham P. (2008-01-29). "Droplet microfluidics". Lab on a Chip8 (2): 198–220. doi:10.1039/b715524g. PMID18231657.