Timeline of fluid and continuum mechanics

From HandWiki - Reading time: 14 min

Short description: None

This timeline describes the major developments, both experimental and theoretical understanding of fluid mechanics and continuum mechanics. This timeline includes developments in:

Prehistory and antiquity

Free body diagram of a ball floating on water. The principles of buoyancy were known in classical antiquity.
  • Before 300 BC – Civilization starts by settling around rivers, coast and lakes.
  • 3000 BC – Irrigation techniques develop in Mesopotamia and Ancient Egypt.[1] Indus Valley Civilisation develops city-wide drainage systems and toilet systems.[1] Egyptians develop reed boats.
  • 2300 BC – Construction of the Nahrawan Canal.[1]
  • 2000–1500 BC – First dams constructed in India to control water.[1]
  • 1700 BC – Windmill are used in Babylonia to pump water.
  • 14th century BC – Water clock are developed in Egypt under the reign of Amenhotep III. Clepsydra water clock design is developed in Ancient Greece .[1]
  • 6th century BC – Theodorus of Samos invents the water level. Ancient Rome's drainage system is designed during the reign of Tarquinius Priscus. Rome's Cloaca Maxima is constructed by lining a river bed with stone. Tunnel of Eupalinos is constructed in Samos.[1]
  • 4th century BC – Mencius describes how to measure an elephant using displacement of water. Development of rain gauges in India.[1] Aqua Appia first Roman aqueduct is built in Rome.[1]
  • 3rd century BC – Archimedes published On Floating Bodies describing the general principle for buoyancy and hydrostatics. Archimedes develops Archimedes' screw for water extraction.[1]
  • 2nd century BC – The aqueduct Aqua Tepula and Aqua Marcia aqueducts are completed in Rome.[1] Zhang Heng of Han dynasty designs the first known seismoscope.[2][3][4]
  • 1st century BC – Frontinus publishes his treatise De aquaeductu on Roman water engineering. Hero of Alexandria makes a series of experiments and devices with fluids, including the aeolipile steam device and wind harnessing devices.

Middle ages

  • 8th–13th century – Arab Agricultural Revolution
  • 725 – Northumbrian monk Bede publishes The Reckoning of Time, which includes a quantitative description of the influence of the moon and the sun over the tides.
  • 850 – The Book of Ingenious Devices is published by the Banū Mūsā brothers, describing a number of early automatic controls using fluid mechanics.[5][6] I
  • 1206 – Ismail al-Jazari invented water-powered programmable automata/robots and water music devices.[7]

Renaissance

17th century

18th century

1832 steam engine based on James Watt's principles.

19th century

An F/A-18C Hornet breaks the sound barrier in the skies. Description of fluid at supersonic speeds were explored at the end of the 19th century before the development of manned airplanes.

20th century

Schlieren photograph showing the thermal convection plume rising from an ordinary candle in still air. Precise mathematical theories of turbulence were not invented until the 20th century.

21st century

See also

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 Rosentrater, Kurt; Balamuralikrishna, Radha (2005). "Essential highlights of the history of fluid mechanics". 2005 Annual Conference: 10–579. https://peer.asee.org/essential-highlights-of-the-history-of-fluid-mechanics.pdf. 
  2. Needham, Joseph (1959). Science and Civilization in China, Volume 3: Mathematics and the Sciences of the Heavens and the Earth. Cambridge: Cambridge University Press. pp. 626–635. Bibcode1959scc3.book.....N. 
  3. Dewey, James; Byerly, Perry (February 1969). "The early history of seismometry (to 1900)". Bulletin of the Seismological Society of America 59 (1): 183–227. https://earthquake.usgs.gov/learn/topics/eqsci-history/early-seismometry.php. 
  4. Agnew, Duncan Carr (2002). "History of seismology". International Handbook of Earthquake and Engineering Seismology. International Geophysics 81A: 3–11. doi:10.1016/S0074-6142(02)80203-0. ISBN 9780124406520. 
  5. Koetsier, Teun (2001), "On the prehistory of programmable machines: musical automata, looms, calculators", Mechanism and Machine Theory (Elsevier) 36 (5): 589–603, doi:10.1016/S0094-114X(01)00005-2. 
  6. Kapur, Ajay; Carnegie, Dale; Murphy, Jim; Long, Jason (2017). "Loudspeakers Optional: A history of non-loudspeaker-based electroacoustic music". Organised Sound (Cambridge University Press) 22 (2): 195–205. doi:10.1017/S1355771817000103. ISSN 1355-7718. 
  7. Professor Noel Sharkey, A 13th Century Programmable Robot (Archive), University of Sheffield.
  8. Gaukroger, Stephen; Schuster, John (2002-09-01). "The hydrostatic paradox and the origins of Cartesian dynamics". Studies in History and Philosophy of Science Part A 33 (3): 535–572. doi:10.1016/S0039-3681(02)00026-2. ISSN 0039-3681. https://www.sciencedirect.com/science/article/pii/S0039368102000262. 
  9. "Benedetto Castelli - Biography" (in en). https://mathshistory.st-andrews.ac.uk/Biographies/Castelli/. 
  10. Newton, Isaac; Chittenden, N. W.; Motte, Andrew; Hill, Theodore Preston (1846). Newton's Principia: The Mathematical Principles of Natural Philosophy. University of California Libraries. Daniel Adee. http://archive.org/details/newtonspmathema00newtrich. 
  11. 11.0 11.1 11.2 11.3 11.4 11.5 11.6 "Mechanics of solids - Stress, Strain, Elasticity | Britannica" (in en). https://www.britannica.com/science/mechanics-of-solids/History. 
  12. Anderson, John David (1998) (in en). A History of Aerodynamics: And Its Impact on Flying Machines. Cambridge University Press. ISBN 978-0-521-66955-9. https://books.google.com/books?id=1OeCJFJY3ZYC. 
  13. D'Alembert (1747) "Recherches sur la courbe que forme une corde tenduë mise en vibration" (Researches on the curve that a tense cord [string] forms [when] set into vibration), Histoire de l'académie royale des sciences et belles lettres de Berlin, vol. 3, pages 214-219. See also: D'Alembert (1747) "Suite des recherches sur la courbe que forme une corde tenduë mise en vibration" (Further researches on the curve that a tense cord forms [when] set into vibration), Histoire de l'académie royale des sciences et belles lettres de Berlin, vol. 3, pages 220-249. See also: D'Alembert (1750) "Addition au mémoire sur la courbe que forme une corde tenduë mise en vibration," Histoire de l'académie royale des sciences et belles lettres de Berlin, vol. 6, pages 355-360.
  14. "Early Developments in Aerodynamics". https://www.centennialofflight.net/essay/Theories_of_Flight/early_aero/TH3.htm. 
  15. "Short notes on the Dynamical theory of Laplace". 20 November 2011. http://www.preservearticles.com/2011112017524/short-notes-on-the-dynamical-theory-of-laplace.html. 
  16. Eckert, Michael (2021). "Pipe flow: a gateway to turbulence" (in en). Archive for History of Exact Sciences 75 (3): 249–282. doi:10.1007/s00407-020-00263-y. ISSN 0003-9519. 
  17. Saint-Venant, Barré de (1866) (in fr). Notice sur la vie et les ouvrages de Pierre-Louis-Georges, comte Du Buat, colonel du génie... auteur des "Principes d'hydraulique". L. Danel. http://catalogue.bnf.fr/ark:/12148/cb30059610j. 
  18. Popova, Elena; Popov, Valentin L. (2015-06-01). "The research works of Coulomb and Amontons and generalized laws of friction" (in en). Friction 3 (2): 183–190. doi:10.1007/s40544-015-0074-6. 
  19. Kent, Walter George (1912). An appreciation of two great workers in hydraulics; Giovanni Battista Venturi ... Clemens Herschel. University of California Libraries. London, Blades, East & Blades. http://archive.org/details/appreciationoftw00kentrich. 
  20. Robert Finn (1999). "Capillary Surface Interfaces". AMS. http://www.ams.org/notices/199907/fea-finn.pdf. 
  21. Case, Bettye Anne; Leggett, Anne M. (2005). Complexities: women in mathematics. Princeton, N.J: Princeton University Press. ISBN 978-0-691-11462-0. 
  22. Cauchy, Augustin (1827) (in French). Exercices de mathematiques. National Library of Naples. http://archive.org/details/bub_gb_o6hCzbAYX7cC. 
  23. Faraday, M. (1831) "On a peculiar class of acoustical figures; and on certain forms assumed by a group of particles upon vibrating elastic surfaces", Philosophical Transactions of the Royal Society (London), vol. 121, pp. 299–318. "Faraday waves" are discussed in an appendix to the article, "On the forms and states assumed by fluids in contact with vibrating elastic surfaces". This entire article is also available on-line (albeit without illustrations) at "Electronic Library".
  24. Others who investigated "Faraday waves" include: (1) Ludwig Matthiessen (1868) "Akustische Versuche, die kleinsten Transversalwellen der Flüssigkeiten betreffend" (Acoustic experiments concerning the smallest transverse waves of liquids), Annalen der Physik, vol. 134, pp. 107–17; (2) Ludwig Matthiessen (1870) "Über die Transversalschwingungen tönender tropfbarer und elastischer Flüssigkeiten" (On the transverse vibrations of ringing low-viscosity and elastic liquids), Annalen der Physik, vol. 141, pp. 375–93 ; (3) John William Strutt (Lord Rayleigh) (1883), "On the crispations of fluid resting upon a vibrating support," Philosophical Magazine, vol. 16, pp. 50–58 ; (4) Thomas Brooke Benjamin and Fritz Joseph Ursell (1954), [1]"The stability of the plane free surface of a liquid in vertical periodic motion" Proceedings of the Royal Society A, vol. 225, issue 1163.
  25. Diffusion Processes, Thomas Graham Symposium, ed. J.N. Sherwood, A.V. Chadwick, W.M.Muir, F.L. Swinton, Gordon and Breach, London, 1971.
  26. Craik (2004).
  27. Stokes (1847).
  28. G. Magnus (1852) "Über die Abweichung der Geschosse," Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, pages 1–23.
  29. G. Magnus (1853) "Über die Abweichung der Geschosse, und: Über eine abfallende Erscheinung bei rotierenden Körpern" (On the deviation of projectiles, and: On a sinking phenomenon among rotating bodies), Annalen der Physik, vol. 164, no. 1, pages 1–29.
  30. See:
    • Maxwell, J.C. (1860 A): Illustrations of the dynamical theory of gases. Part I. On the motions and collisions of perfectly elastic spheres. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4th Series, vol.19, pp.19-32. [2]
    • Maxwell, J.C. (1860 B): Illustrations of the dynamical theory of gases. Part II. On the process of diffusion of two or more kinds of moving particles among one another. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4th Ser., vol.20, pp.21-37. [3]
  31. Besant, W. H. (1859). "Article 158". A treatise on hydrostatics and hydrodynamics. Deighton, Bell. pp. 170–171. https://archive.org/details/atreatiseonhydr01besagoog/page/n182/mode/2up. 
  32. Matsuoka, Chihiro (2014). "Kelvin-Helmholtz Instability and Roll-up" (in en). Scholarpedia 9 (3): 11821. doi:10.4249/scholarpedia.11821. ISSN 1941-6016. http://www.scholarpedia.org/article/Kelvin-Helmholtz_Instability_and_Roll-up. 
  33. Wragg, David W. (1973). A Dictionary of Aviation (first ed.). Osprey. p. 281. ISBN 9780850451634. 
  34. Note:
    • That Wenham and Browning were attempting to build a wind tunnel is briefly mentioned in: Sixth Annual Report of the Aeronautical Society of Great Britain for the Year 1871, p. 6. From p. 6: "For this purpose [viz, accumulating experimental knowledge about the effects of wind pressure], the Society itself, through Mr. Wenham, had directed a machine to be constructed by Mr. Browning, who, he was sure, would take great interest in the work, and would give to it all the time and attention required."
    • In 1872, the wind tunnel was demonstrated to the Aeronautical Society. See: Seventh Annual Report of the Aeronautical Society of Great Britain for the Year 1872, pp. 6–12.
  35. [4][|permanent dead link|dead link}}] "On Waves Propagated along the Plane Surface of an ElasticSolid", Lord Rayleigh, 1885
  36. von Helmholtz, Hermann (1885). On the sensations of tone as a physiological basis for the theory of music (Second English ed.). London: Longmans, Green, and Co.. p. 44. https://archive.org/details/onsensationston00unkngoog. Retrieved 12 October 2010. 
  37. "Aerospaceweb.org | Ask Us - Ernst Mach and Mach Number". https://aerospaceweb.org/question/history/q0149.shtml. 
  38. "Apparatus fro continuously measuring flow rate of fine material flowing through transport pipe". International Journal of Multiphase Flow 11 (6): I. 1985. doi:10.1016/0301-9322(85)90034-5. ISSN 0301-9322. http://dx.doi.org/10.1016/0301-9322(85)90034-5. 
  39. Lueptow, Richard (2009-11-21). "Taylor-Couette flow" (in en). Scholarpedia 4 (11): 6389. doi:10.4249/scholarpedia.6389. ISSN 1941-6016. Bibcode2009SchpJ...4.6389L. 
  40. Korteweg, D. J.; de Vries, G. (May 1895). "XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 39 (240): 422–443. doi:10.1080/14786449508620739. https://zenodo.org/record/1431215. 
  41. Darrigol, O. (2005), Worlds of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl, Oxford University Press, p. 84, ISBN 9780198568438, https://archive.org/details/worldsofflowhist0000darr/page/84 
  42. Leissa, A. W. (2005-11-04). "The historical bases of the Rayleigh and Ritz methods". Journal of Sound and Vibration 287 (4): 961–978. doi:10.1016/j.jsv.2004.12.021. ISSN 0022-460X. https://www.sciencedirect.com/science/article/pii/S0022460X05000362. 
  43. "Oldham, Richard Dixon". Complete Dictionary of Scientific Biography. 10. Charles Scribner's Sons. 2008. p. 203. 
  44. "Reid's Elastic Rebound Theory". United States Geological Survey. https://earthquake.usgs.gov/regional/nca/1906/18april/reid.php. 
  45. Dover, ed (1964). Scientific papers of Lord Rayleigh (John William Strutt). 5. pp. 573–610. https://archive.org/stream/scientificpapers05rayliala#page/n593/mode/2up. 
  46. A.E.H. Love, "Some problems of geodynamics", first published in 1911 by the Cambridge University Press and published again in 1967 by Dover, New York, USA.
  47. Jeffery, G. B. "L. The two-dimensional steady motion of a viscous fluid." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 29.172 (1915): 455–465.
  48. Hamel, Georg. "Spiralförmige Bewegungen zäher Flüssigkeiten." Jahresbericht der Deutschen Mathematiker-Vereinigung 25 (1917): 34–60.
  49. Truesdell, C. (1954). The kinematics of vorticity (Vol. 954). Bloomington: Indiana University Press.
  50. Adamatzky, Andrew (2019-06-10). "A brief history of liquid computers" (in en). Philosophical Transactions of the Royal Society B: Biological Sciences 374 (1774): 20180372. doi:10.1098/rstb.2018.0372. ISSN 0962-8436. PMID 31006363. PMC 6553589. https://royalsocietypublishing.org/doi/10.1098/rstb.2018.0372. 
  51. Von Kármán, Theodore (1921). "Über laminare und turbulente Reibung". Zeitschrift für Angewandte Mathematik und Mechanik 1 (4): 233–252. doi:10.1002/zamm.19210010401. Bibcode1921ZaMM....1..233K. https://zenodo.org/record/1447403. 
  52. Griffith, A. A. (1921). "The Phenomena of Rupture and Flow in Solids". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 221 (582–593): 163–198. doi:10.1098/rsta.1921.0006. Bibcode1921RSPTA.221..163G. 
  53. Kapitza, P. (1938). "Viscosity of Liquid Helium Below the λ-Point". Nature 141 (3558): 74. doi:10.1038/141074a0. Bibcode1938Natur.141...74K. 
  54. Allen, J. F.; Misener, A. D. (1938). "Flow of Liquid Helium II". Nature 142 (3597): 643. doi:10.1038/142643a0. Bibcode1938Natur.142..643A. 
  55. Alfvén, H (1942). "Existence of Electromagnetic-Hydrodynamic Waves". Nature 150 (3805): 405–406. doi:10.1038/150405d0. Bibcode1942Natur.150..405A. 
  56. Fälthammar, Carl-Gunne (October 2007). "The discovery of magnetohydrodynamic waves". Journal of Atmospheric and Solar-Terrestrial Physics 69 (14): 1604–1608. doi:10.1016/j.jastp.2006.08.021. Bibcode2007JASTP..69.1604F. 
  57. Brennen, Christopher E. (1995). Cavitation and Bubble Dynamics. Oxford University Press. ISBN 978-0-19-509409-1. 
  58. Oldroyd, J. G. (1950-02-22). "On the formulation of rheological equations of state" (in en). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 200 (1063): 523–541. doi:10.1098/rspa.1950.0035. ISSN 0080-4630. Bibcode1950RSPSA.200..523O. https://royalsocietypublishing.org/doi/10.1098/rspa.1950.0035. 
  59. E. P. Gross (1961). "Structure of a quantized vortex in boson systems". Il Nuovo Cimento 20 (3): 454–457. doi:10.1007/BF02731494. Bibcode1961NCim...20..454G. https://cds.cern.ch/record/343403. 
  60. L. P. Pitaevskii (1961). "Vortex lines in an imperfect Bose gas". Sov. Phys. JETP 13 (2): 451–454. http://www.jetp.ras.ru/cgi-bin/e/index/r/40/2/p646?a=list. 
  61. Anderson, M. H.; Ensher, J. R.; Matthews, M. R.; Wieman, C. E.; Cornell, E. A. (1995-07-14). "Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor" (in en). Science 269 (5221): 198–201. doi:10.1126/science.269.5221.198. ISSN 0036-8075. PMID 17789847. Bibcode1995Sci...269..198A. 
  62. Delaquilla, Alessandra (2021-02-05). "History of Microfluidics" (in en). Elveflow. https://www.elveflow.com/microfluidic-reviews/general-microfluidics/history-of-microfluidics/. 
  63. "A New Form of Matter: II, NASA-supported researchers have discovered a weird new phase of matter called fermionic condensates". Nasa Science. February 12, 2004. https://science.nasa.gov/science-news/science-at-nasa/2004/12feb_fermi/. 




Licensed under CC BY-SA 3.0 | Source: https://handwiki.org/wiki/Physics:Timeline_of_fluid_and_continuum_mechanics
1 |
↧ Download this article as ZWI file
Encyclosphere.org EncycloReader is supported by the EncyclosphereKSF